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It is known from the work of F. Otto (2001) [9], that the space of probability measures
equipped with the quadratic Wasserstein distance, i.e., the 2-Wasserstein space, can be
viewed as a Riemannian manifold. Here we show that when the quadratic cost is replaced
by a general homogeneous cost of degree p > 1, the corresponding space of probability
measures, i.e., the p-Wasserstein space, can be endowed with a Finsler metric whose
induced distance function is the p-Wasserstein distance. Using this Finsler structure of
the p-Wasserstein space, we give definitions of the differential and gradient of functionals
defined on this space, and then of gradient flows in this space. In particular we show
in this framework that the parabolic q-Laplacian equation is a gradient flow in the
p-Wasserstein space, where p = q/(q − 1). When p = 2, we recover the Riemannian
structure introduced by F. Otto, which confirms that the 2-Wasserstein space is a Riemann–
Finsler manifold. Our approach is confined to a smooth situation where probability
measures are absolutely continuous with respect to the Lebesgue measure on R

n , and they
have smooth and strictly positive densities.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Il est connu que l’espace des mesures de probabilités muni de la distance de Wasserstein L2

(l’espace de Wasserstein L2) est une variété Riemanienne (voir F. Otto (2001) [9]). Ici, nous
montrons que lorsqu’on change le coût quadratique en un coût plus general, homogène de
degré p > 1, l’espace correspondant (l’espace de Wasserstein Lp) admet une structure de
Finsler dont la distance induite est la distance de Wasserstein Lp . Grâce à cette structure
de Finsler, nous donnons une définition de la différentiel et du gradient des fonctionelles
définies sur cet espace, et aussi des flux de gradient sur cet espace. En particulier nous
montrons que l’équation parabolique q-Laplacien est un flux de gradient dans l’espace de
Wasserstein Lp pour p = q/(q−1). Quand p = 2, nous retrouvons la structure Remannienne
de F. Otto, ce qui confirme que l’espace de Wasserstein L2 est une variété Riemanienne de
Finsler. Notre méthode s’applique à des mesures de probabilité absolument continues par
rapport à la mesure de Lebesgue dans R

n , et dont les densités sont strictement positives.
© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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Ce papier traite de la structure géometrique de l’espace de Wasserstein L p , (Pp(Rn),dp), et de ses applications à des
equations aux dérivées partielles. Il est connu (voir Jordan–Kinderlehrer–Otto [7], Otto [9], Carrillo–McCann–Villani [4]) que
l’espace de Wasserstein L2 admet une structure Riemanienne. Récemment, Agueh [1] a montré l’existence des solutions
de l’equation ∂ρ

∂t = div[ρ∇c∗ ◦ ∇(F ′(ρ) + U )] en généralisant à (Pp(Rn),dp) la méthode variationelle de [7] ; ici c∗(x) =
|x|q/q et q = p/(p − 1). Ce travail suggère que l’espace (Pp(Rn),dp) admet une structure pour laquelle cette équation peut
être vue comme un flux de gradient. Ici nous montrons que (Pp(Rn),dp) admet une structure de Finsler, F p , et nous
donnons une définition de la différentiel et du gradient des fonctionelles définies sur cet espace, et aussi des flux de
gradient sur cet espace. Finalement, nous prouvons que cette équation est éffectivement un flux de gradient de l’energie
E(ρ) = ∫

Rn (F (ρ) + ρU )dx dans la variété de Finsler (Pp(Rn), F p).

1. Introduction

Let n � 1 be an integer and p > 1 be a real number. Denote by Pp(Rn) the space of smooth and strictly positive
probability densities on R

n . The p-Wasserstein distance between two densities ρ0 and ρ1 in Pp(Rn) is defined as

dp
p(ρ0,ρ1) = inf

T

{∫
Rn

∣∣T (x) − x
∣∣p

ρ0(x)dx; T : R
n → R

n, T#ρ0 = ρ1

}
, (1)

where T#ρ0 = ρ1 means that ρ1(B) = ρ0(T −1(B)) for all Borel sets B ⊂ R
n . When Pp(Rn) is equipped with the distance

dp , it will be called the p-Wasserstein space, and denoted by (Pp(Rn),dp). This paper deals with the geometric structure
of the p-Wasserstein space and its applications to partial differential equations (pde). The starting point is the pioneering
work of Jordan–Kinderlehrer–Otto [7] where existence of the solution to the linear Fokker–Planck equation, ∂tρ = �ρ +
div(ρ∇U ), is proved via a time-discrete iterative variational scheme in (P2(R

n),d2). Then, it is shown that (P2(R
n),d2) can

be endowed with a “Riemannian” structure (see Otto [9], Carrillo–McCann–Villani [4]). Using a similar variational scheme in
(Pp(Rn),dp), the author [1] proved existence of solutions to a larger class of pde’s which includes the q-Laplacian equation

(q = p/(p −1)), namely, ∂ρ
∂t = div[ρ∇c∗ ◦∇(F ′(ρ)+U )], where c∗(x) = |x|q/q is the Legendre transform of c(x) = |x|p/p, and

the functions F and U satisfy some regularity assumptions. This result suggests that there is a deeper geometric structure in
the p-Wasserstein space through which this pde is a gradient flow. This is precisely the aim of this work. Here, we showed
that the p-Wasserstein space can be endowed with a Finsler structure, F p . Using F p , we give definitions of the differential
and gradient of functionals on this space. Precisely, we show that the gradient of a smooth functional E on Pp(Rn) w.r.t.
F p is ∇F p E(ρ) = −div[ρ∇c∗ ◦ ∇( δE

δρ )], where δE/δρ denotes the gradient of E w.r.t. the standard L2-Euclidean structure.

When E(ρ) = ∫
Rn (F (ρ) + ρU )dx, we deduce that its gradient flow, ∂tρ = −∇F p E(ρ), in the p-Wasserstein Finsler space

(Pp(Rn), F p) is the pde studied in [1]. In particular when p = 2, we recover Otto’s interpretation [9]. So the main result of
this work can be summarized as follows: for all p > 1, the p-Wasserstein space (Pp(Rn),dp) can be viewed as a Finsler manifold
(Pp(Rn), F p). When p = 2, this Finsler structure is Riemannian. Therefore the 2-Wasserstein space (P2(R

n),d2) is a Riemann–Finsler
manifold (P2(R

n), F2). We end this introduction by mentioning that definitions of subdifferential and gradient flows in the
p-Wasserstein space were previously given for more general functionals in [2], using a method based on metric arguments.
Though our approach is different from theirs, we will show later in Remark 2 that both approaches match via a certain
isomorphism. Throughout the paper, c∗(x) = |x|q/q denotes the Legendre transform of a cost function c(x) = |x|p/p, where
p > 1 and 1/p + 1/q = 1, and for V : R

n → R and ρ ∈ P(Rn), ‖V ‖p
Lp
ρ(Rn)

:= ∫
Rn |V (x)|pρ(x)dx.

2. Generalities on Finsler manifolds

Let M be a manifold, and denote by Tx M the tangent space at x ∈ M and by T M := ⋃
x∈M Tx M the tangent bundle of M ,

that is the set of all pairs (x, v) ∈ M × Tx M . A Finsler metric on M is a function F : T M → [0,∞) such that:

(i) Positivity: F (x, v) > 0 for all x ∈ M and 0 �= v ∈ Tx M;
(ii) Positive homogeneity: F (x, λv) = λF (x, v) for all λ > 0, x ∈ M and v ∈ Tx M;

(iii) Strong convexity: F (x, v + v ′) � F (x, v) + F (x, v ′) for all x ∈ M and v, v ′ ∈ Tx M , with equality (when v, v ′ �= 0) if and
only if v = λv ′ for some λ > 0.

Condition (iii) is slightly weaker than the one formulated in many differential geometry text-books (e.g. [10]) where the
definition of a Finsler metric is given for a finite dimensional smooth manifold, namely:

(iii)′ The Hessian matrix [F 2]vi v j (x, v) is positive definite for any non-zero vector v ∈ Tx M .

But since our applications will involve only infinite dimensional spaces (space of probability densities), it is most suitable
to use (iii). Of course (iii)′ implies (iii), but they are not equivalent (see [10]). If F satisfies F (x,−v) = F (x, v), the Finsler
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metric is said to be reversible. In that case we have the absolute homogeneity: F (x, λv) = |λ|F (x, v) for all λ ∈ R, x ∈ M and
v ∈ Tx M . When M is equipped with a Finsler metric F , we call (M, F ) a Finsler manifold. On every tangent space Tx M at
x ∈ M , F defines a norm (without the reversibility condition), ‖‖Tx M := F (x, .), called a Minkowski norm on Tx M . When F
is reversible, then the Minkowski norm is a genuine norm. Because of (iii), the Minkowski norm satisfies the strong triangle
inequality: ‖v + v ′‖Tx M � ‖v‖Tx M + ‖v ′‖Tx M for all v, v ′ ∈ Tx M with equality (when v, v ′ �= 0), if and only if v = λv ′ for some
λ > 0. When the Minkowski norm is Euclidean at every x ∈ M (i.e., admits an inner product ‖v‖Tx M = √〈v, v〉Tx M ), then the
Finsler metric is called a Riemann–Finsler metric, and the manifold (M, F ) is then called a Riemann–Finsler manifold.

Finsler metrics are used to measure the length of smooth curves in a manifold. Indeed, if c = c(t) : [0,1] → M is a
C1-curve and p > 1, we define the p-length of c in (M, F ) as

LF (c) := ∥∥F
(
c(t), ċ(t)

)∥∥
L p(0,1)

=
( 1∫

0

[
F
(
c(t), ċ(t)

)]p
dt

)1/p

, (2)

where ċ(t) ∈ Tc(t)M is the tangent vector at c(t) ∈ M along the curve c. Actually, in many differential geometry text-books

(e.g. [10]), the L1-norm is customarily used to define the length of curves, i.e., LF (c) := ∫ 1
0 F (c(t), ċ(t))dt . Here, we use the

L p-norm of (0,1) � t �→ F (c(t), ċ(t)) as it more convenient for our applications. Equipped with this length structure, we can
define the distance between two points x, y in (M, F ) in the standard way, as

dF (x, y) := inf
c

{
LF (c): c : [0,1] → M is C1, c(0) = x, c(1) = y

}
. (3)

dF is called the distance function of F , or the distance induced by F on M . A geodesic between two points x, y in (M, F ) is
defined as a length-minimizing curve with constant-speed connecting x and y, i.e., a minimizing curve c̄(t) in dF (x, y) s.t.
dF (c̄(s), c̄(t)) = (t − s)dF (x, y) for all 0 � s � t � 1. Hence if c̄ is such a geodesic, we have dF (x, y) = LF (c̄). Now, consider
a functional L : M → R and a point x ∈ M . We define the differential of L at x, as the bounded linear functional, D F L(x), on
the tangent space (Tx M,‖‖T xM := F (x, .)), i.e., the element on the cotangent space T ∗

x M , defined by

〈
D F L(x); v

〉 = [
D F L(x)

]
(v) := d

dt
L
(
c(t)

)∣∣∣∣
t=0

∀v ∈ TxM, (4)

where c : [0,1] → M is an arbitrary C1-curve emanating from c(0) = x with tangent vector ċ(0) = v .
The norm of the differential D F L(x) in T ∗

x M is defined in the standard way, as the dual norm,∥∥D F L(x)
∥∥∗ = ∥∥D F L(x)

∥∥
T ∗

x M := sup
v

{∣∣〈D F L(x); v
〉∣∣: v ∈ TxM, ‖v‖T xM � 1

}
. (5)

Since the tangent space Tx M is not in general Euclidean (except when (M, F ) is a Riemann–Finsler manifold), then to
define the gradient of L : M → R, we are inspired by the definition of the metric gradient in normed linear spaces by Golomb
and Tapia [6].

Definition 2.1. Let p > 1 and set q = p/(p − 1). The p-gradient of L : M → R at x ∈ M with respect to the Finsler structure F
is the unique element (if it exists), ∇F p L(x), of TxM that satisfies〈

D F L(x);∇F p L(x)
〉 = ∥∥∇F p L(x)

∥∥p
Tx M = ∥∥D F L(x)

∥∥q
∗. (6)

In particular when p = 2, we recover the standard definition of the metric gradient in a normed space formulated in [6],
which clearly extends the usual definition of gradient in a Hilbert space. The proof of the uniqueness of the p-gradient is a
consequence of the strong convexity of the Minkowski norm. Its existence follows from the Hahn–Banach theorem provided
Tx M at every x ∈ M is reflexive (see [6]).

3. Application to the p-Wasserstein space

For simplicity, we restrict our discussion to bounded domains of R
n . So, let Ω be an open, bounded, convex and smooth

subset of R
n , and let p > 1. Denote by P (Ω) the set of strictly positive C1-probability densities on Ω , and by P p(Ω)

the p-Wasserstein space (P (Ω),dp). It is known [5], that the Monge–Kantorovich problem (1) has a unique minimizer
T (x) = x − ∇c∗(∇φ(x)) where φ :Ω → R is a c-concave function, i.e., φ(x) = infy∈Ω {c(x − y) − ϕ(y)} for some function
ϕ :Ω → R. Moreover, T is one-to-one, and its inverse T −1(y) = y − ∇c∗(∇ϕ(y)) transports ρ1 to ρ0. Hence,

dp(ρ0,ρ1)
p =

∫
Ω

∣∣T (x) − x
∣∣p

ρ0(x)dx =
∫
Ω

∣∣y − T −1(y)
∣∣p

ρ1(y)dy.

Furthermore, if t ∈ [0,1] and Tt(x) := (1 − t)x + tT (x) is McCann’s interpolation [8], then the curve ρ̄(t) = (Tt)#ρ0 : [0,1] →
P (Ω) is the unique (constant-speed) geodesic joining ρ0 and ρ1 in the p-Wasserstein space (P (Ω),dp) (see [2]).
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To realize the p-Wasserstein space P p(Ω) as a Finsler manifold (P (Ω), F p), we must identify the tangent space
Tρ P (Ω) at every point ρ ∈ P (Ω), and define a Finsler metric, F p , so that the induced distance, dF p , coincides with
the p-Wasserstein distance, dp . So matching the geodesic in a Finsler manifold with that in (P (Ω),dp), we must have
dp(ρ0,ρ1) = dF p (ρ0,ρ1) = LF p (ρ̄) which suggests via (2),

F p
(
ρ̄(t), ˙̄ρ(t)

) :=
(∫

Ω

∣∣T (x) − x
∣∣p

ρ0(x)dx

)1/p

=
(∫

Ω

∣∣∣∣ ∂

∂t
Tt(x)

∣∣∣∣
p

ρ0(x)dx

)1/p

.

To get an explicit formula for F p , we rewrite the rhs of the subsequent equation in terms of ρ̄(t) and ˙̄ρ(t) = ∂ρ̄(t)
∂t . For that,

consider the velocity field V̄ (t, x) associated with the trajectory [0,1] × Ω � (t, x) �→ Tt(x) ∈ Ω , i.e., V̄ (t, Tt(x)) = ∂
∂t Tt(x). It

is easy to check that ρ̄(t) = (Tt)#ρ0 satisfies the transport equation

˙̄ρ(t, x) = −div
(
ρ̄(t, x)V̄ (t, x)

)
in Ω, with V̄ (t, x) · ν = 0 on ∂Ω and V̄ (t, x) = ∇c∗(∇ϕ̄t(x)

)
, (7)

where we use that V̄ (t, x) = x−(Tt )
−1(x)

t , (Tt)
−1(x) = x − ∇c∗(∇ϕt(x)), meaning that (see [5]) (Tt)

−1 is the optimal map in
dp(ρt ,ρ0), and ϕ̄t(x) := 1

t1/(q−1) ϕt(x). The boundary condition in (7) can be seen by integrating the transport equation in (7)

against a test function ϕ ∈ C1(Ω), use an integration by parts, the definitions of ρ̄(t) and V̄ (t, Tt(x)) and then ρ̄(t) > 0.
Hence the formula of F p(ρ̄(t), ˙̄ρ(t)) becomes:

[
F p

(
ρ̄(t), ˙̄ρ(t)

)]p =
∫
Ω

∣∣V̄
(
t, Tt(x)

)∣∣p
ρ0(x)dx =

∫
Ω

∣∣V̄ (t, x)
∣∣p

ρ̄(t, x)dx := ∥∥V̄ (t, .)
∥∥p

L p
ρ̄(t,.)(Ω)

. (8)

Based on (7) and (8), we can formulate the following definitions:

Definition 3.1. The tangent space, Tρ P (Ω), at ρ ∈ P (Ω) in the p-Wasserstein space, is the subset of −div(ρL p
ρ(Ω)) whose

elements v := −div(ρV ) satisfy,

‖V ‖L p
ρ(Ω) < ∞, V = ∇c∗ ◦ ∇φ in Ω, V · ν = 0 on ∂Ω, (9)

for some W 1,q
ρ (Ω)-function φ :Ω → R, where q = p/(p − 1) and ‖V ‖p

Lp
ρ(Ω)

:= ∫
Ω

|V (x)|pρ(x)dx.

Definition 3.2. The Finsler metric in the p-Wasserstein space is the nonnegative function, F p , defined on the tangent bundle
T P (Ω) := ⋃

ρ∈P (Ω) Tρ P (Ω) by

F p(ρ, v) := ‖V ‖L p
ρ(Ω) = ∥∥∇c∗ ◦ ∇φ

∥∥
L p
ρ(Ω)

, (10)

where ρ ∈ P (Ω) and v ∈ Tρ P (Ω) with v := −div(ρV ), V = ∇c∗ ◦ ∇φ.

The following propositions further justify these definitions:

Proposition 3.1. If [0,1] � t �→ ρ(t) ∈ P (Ω) is any C1-curve, then the variational problem

inf
V (t)∈L p

ρ(t)(Ω)

{∫
Ω

∣∣V (t, x)
∣∣p

ρ(t, x)dx: ρ̇(t) + div
(
ρ(t)V (t)

) = 0 in Ω, V (t) · ν = 0 on ∂Ω

}
(11)

has at most one minimizer V , which is characterized by

V (t, x) = ∇c∗ ◦ ∇φt(x) in Ω, and V (t, x) · ν = 0 on ∂Ω (12)

for some W 1,q
ρ(t)(Ω) function φt :Ω → R, where q = p/(p − 1).

In fact, among all the velocity fields leading to the same flow ρ(t), we select this minimal velocity field as the tangent
vector ρ̇(t) in Definition 3.1 of the tangent space in P p(Ω).

Proof. If V is a minimizer in (11) and Vε(t) := V (t) + εW /ρ(t) a variation of V , with ε �= 0 and W ∈ C1
0(Ω;Ω) s.t.

div W = 0, we have[
d

dε

∫
Ω

∣∣Vε(t, x)
∣∣p

ρ(t, x)dx

]
ε=0

= p

∫
Ω

(∇c ◦ V (t, x)
) · W (x)dx = 0

which shows that ∇c ◦ V (t, x) = ∇φt(x) or V (t, x) = ∇c∗ ◦ ∇φt(x) for some function φt ∈ W 1,q
ρ(t)(Ω). �
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Proposition 3.2. For any ρ0,ρ1 ∈ P (Ω), defining LF p (ρ) by (2), we have

dp(ρ0,ρ1) = inf
ρ(t)

{
LF p (ρ); ρ : [0,1] → P (Ω), ρ(0) = ρ0, ρ(1) = ρ1

} := dF p (ρ0,ρ1). (13)

Proof. (13) is an analogue of Benamou–Brenier [3] characterization of d2, for dp . �
Remark 1. If ρ ∈ P (Ω), the Minkowski norm, −div(ρL p

ρ(Ω)) � −div(ρV ) := v �→ F p(ρ, v) := ‖V ‖Lp
ρ(Ω) , can be identified

with the L p
ρ -norm. Then P p(Ω) = (P (Ω), F p) is a reversible Finsler manifold. Moreover, Tρ P (Ω) is reflexive at every ρ ∈

P (Ω). In particular when p = 2, the Minkowski norm F2(ρ, .) is identified with the L2
ρ -norm which comes from an inner

product. Therefore, P2(Ω) = (P (Ω), F2) is a Riemann–Finsler manifold as shown by Otto [9].

Remark 2. In [2] (in the context of bounded domains), the tangent space, Tanρ P (Ω), of P p(Ω) is a subset of L p
ρ(Ω),

while here, Tρ P (Ω) is a subset of the space of distributions, −div(ρL p
ρ(Ω)), which is the image of Tanρ P (Ω) under the

isomorphism L p
ρ(Ω) � V �→ −div(ρV ) ∈ −div(ρL p

ρ(Ω)).

Next we derive the gradient of functionals in the p-Wasserstein Finsler manifold (P (Ω), F p).

Proposition 3.3. Let E : P (Ω) → R be a functional, and ξ a C2(Ω)-vector field related to E by the rule

d

dt
E
(
ρ(t)

) =
∫
Ω

ξ(t, x)ρ̇(t, x)dx.

Then the gradient of E with respect to the Finsler structure F p is

∇F p E(ρ) = −div
[
ρ∇c∗ ◦ ∇ξ

]
in Ω,

[∇c∗ ◦ ∇ξ
] · ν = 0 on ∂Ω. (14)

Therefore the gradient flow of E in the p-Wasserstein Finsler manifold (P (Ω), F p) is the pde

∂ρ

∂t
:= −∇F p E(ρ) = div

[
ρ∇c∗ ◦ ∇ξ

]
in Ω,

[∇c∗ ◦ ∇ξ
] · ν = 0 on ∂Ω. (15)

Proof. First we compute the dual norm ‖D F p E(ρ)‖∗ via (4) and (5). By definition,

〈
D F p E(ρ); ρ̇(t)

〉 = d

dt
E
(
ρ(t)

) �⇒ 〈
D F p E(ρ); v

〉 = ∫
Ω

ξ(x)v(x)dx, ∀v ∈ Tρ P (Ω). (16)

Then using v = −div(ρV ) with V · ν = 0 on ∂Ω , an integration by parts and Hölder inequality, we have:

∣∣〈D F p E(ρ); v
〉∣∣ =

∣∣∣∣
∫
Ω

ρV · ∇ξ dx

∣∣∣∣ �
(∫

Ω

ρ|∇ξ |q dx

) 1
q
(∫

Ω

ρ|V |p dx

) 1
p

= ‖∇ξ‖Lq
ρ(Ω)‖v‖Tρ P (Ω),

i.e., ‖D F p E(ρ)‖∗ � ‖∇ξ‖Lq
ρ (Ω) . Now setting v̄ = −div(ρ V̄ ) with V̄ = 1

λ
∇c∗ ◦ ∇ξ and λ = ‖∇ξ‖q/p

Lq
ρ(Ω)

, we have ‖v̄‖Tρ P (Ω) =
‖V̄ ‖Lp

ρ(Ω) = 1 and 〈D F p E(ρ); v̄〉 = ‖∇ξ‖Lq
ρ(Ω) . Hence, ‖D F p E(ρ)‖∗ = ‖∇ξ‖Lq

ρ (Ω) . Next we compute ∇F p E(ρ) via (6). Since

∇F p E(ρ) ∈ Tρ P (Ω), then ∇F p E(ρ) = −div(ρV ) for some V = ∇c∗ ◦ ∇φ ∈ L p
ρ(Ω) with V · ν = 0 on ∂Ω . Then (6) reads as∫

Ω
ρV · ∇ξ dx = ∫

Ω
ρ|V |p dx = ∫

Ω
ρ|∇ξ |q dx. It is easy to check that V = |∇ξ |q−2∇ξ = ∇c∗ ◦ ∇ξ solves this equation. Then

by uniqueness (see Definition 2.1), we deduce that ∇F p E(ρ) is given by (14). We conclude (15) by the definition of the
gradient flow. �
Example 1. If E is the sum of the internal energy, potential energy and interaction energy, E(ρ) = ∫

Ω
(F (ρ) + Uρ + 1

2 (W 


ρ)ρ)dx, where F : [0,∞) → R, U :Ω → R and W : R
n → R are sufficiently regular and W is even, then (15) gives that the

gradient flow of E w.r.t. the Finsler structure F p is:

∂ρ

∂t
= div

[
ρ∇c∗ ◦ ∇(

F ′(ρ) + U + W 
 ρ
)]

in Ω,
[∇c∗ ◦ ∇(

F ′(ρ) + U + W 
 ρ
)] · ν = 0 on ∂Ω.
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