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It is shown that the collisional gain operator for a Maxwell gas does not increase the Fisher
information. Our proof is a variant of the one given by Villani in 1998 [2], but it is shorter
and based on Fourier techniques rather than direct estimates. The method we use also
applies to general (non-symmetric) Wild convolutions.
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r é s u m é

On montre que le terme de gain de l’opérateur de collision pour un gaz de molécules
Maxwelliennes n’induit pas d’augmentation de l’information de Fisher. Notre preuve est
une variante de celle donnée par Villani dans 1998 [2], plus courte et basée sur des
techniques de type Fourier plutôt que sur des estimations directes. La méthode utilisée
s’applique aussi au cas des convolutions de Wild générales (non symétriques).

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The collisional gain operator for Maxwellian molecules in R
N is defined by

Q +[ f , g](v) =
∫ ∫

RN×SN−1

B(n · q̂) f
(
v ′)g

(
v ′∗

)
dv∗ dσ(n). (1)

In the homogeneous Boltzmann equation ∂t f = Q +[ f , f ] − f , the difference Q +[ f , f ] − f accounts for the changes in the
velocity distribution f due to binary particle collisions. In (1), the cross section B : [−1,1] → R�0 determines the frequency
at which collisions between particles of velocities v ′ and v ′∗ occur, and these pre-collisional velocities are related to the
post-collisional ones, v and v∗ , by

v ′ = 1

2

(
v + v∗ + |q|n)

, v ′∗ = 1

2

(
v + v∗ − |q|n)

, with q = v − v∗ and q̂ = q/|q|.
In Maxwellian gases, B depends on n · q̂ but not on |v − v∗|, and∫

SN−1

B(e · n)dσ(n) = 1 for every unit vector e ∈ R
N . (2)
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Under the additional assumption that B is even, B(s) = B(−s), it has been shown by Villani [2] that Q + does not increase
the Fisher information, defined on probability densities f by

F [ f ] =
∫

RN

|∇ f (v)|2
f (v)

dv = 4
∫

RN

∣∣∇√
f (v)

∣∣2
dv.

More precisely, it has been shown that F [Q +[ f , g]] � (F [ f ] + F [g])/2. Below, we prove that the hypothesis B(s) = B(−s)
can be removed at the price of replacing the original estimate by

F
[

Q +[ f , g]] � 1 + λB

2
F [ f ] + 1 − λB

2
F [g] with λB :=

∫
SN−1

(e · n)B(e · n)dσ(n) ∈ (−1,1). (3)

For even B , we have λB = 0 and thus recover the estimate [2]. Our main contribution in this note, however, is a novel,
concise derivation of the following representation formula,

∇ Q +[ f , g](v) = 1

2

∫ ∫
SN−1×RN

B(q̂ · n)
{

Y ′+ + Pn,q
[
Y ′−

]}
dσ(n)dv∗, Y ′± := ∇ f

(
v ′)g

(
v ′∗

) ± f
(

v ′)∇g
(

v ′∗
)
. (4)

The “projection” operator P is defined for a,b, x ∈ R
N by

Pa,b[x] = (â · b̂)x − (â ∧ b̂) · x, with v ∧ w = v wT − w vT , (5)

and â = a/|a| denotes the normalization of a vector a ∈ R
N . Notice that v ∧ w is an anti-symmetric N × N-matrix, and in

particular, in dimension N = 3, one has (â ∧ b̂) · x = (â × b̂) × x. Formula (4) — for symmetric B — is at the heart of Villani’s
original proof, where it is obtained from integration by parts and geometric considerations. Below, we prove (4) in one line
by Fourier methods.

Notation. Inside integrals, f , f ′, g∗, g′∗ abbreviate f (v), f (v ′), g(v∗), g(v ′∗), and Q + abbreviates Q +[ f , g].

2. Fourier representation

Our starting point is the following famous identity by Bobylëv [1]:

Lemma 2.1. Given two probability densities f and g, then

Q̂ +[ f , g](ξ) =
∫

SN−1

B(n · ξ̂ ) f̂ (ξ+)ĝ(ξ−)dσ(n) with ξ± = 1

2

(
ξ ± |ξ |n)

. (6)

The key observation is that representation (6) in combination with the elementary relation (7) below — which admits a
one-line proof — yields the Fourier analogue of (4).

Lemma 2.2. For arbitrary ξ ∈ R
N , and with ξ± defined in (6),

(1 + Pn,ξ )[ξ+] + (1 − Pn,ξ )[ξ−] = 2ξ. (7)

Proof. On one hand, ξ+ + ξ− = ξ follows directly from (6). And on the other hand, also

Pn,ξ [ξ+ − ξ−] = Pn,ξ

[|ξ |n] = |ξ |((n · ξ̂ )n − n(n · ξ̂ ) + ξ̂ (n · n)
) = |ξ |ξ̂ = ξ,

since n · n = 1, and ξ̂ := ξ/|ξ | by definition. �
Inserting the relation (7) under the integral in (6) gives

∇̂ Q +(ξ) = iξ Q̂ +(ξ) = 1

2

∫
SN−1

B(ξ̂ · n)
(
(1 + Pn,ξ )[iξ+] + (1 − Pn,ξ )[iξ−]) f̂ (ξ+)ĝ(ξ−)dσ(n). (8)

We shall now show that the Fourier transform of (8) is (4). Substituting

f̂ (ξ+) =
∫

N

e−iv·ξ+ f (v)dv, iξ+ f̂ (ξ+) =
∫

N

e−iv·ξ+∇ f (v)dv,
R R
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and respective expressions for ĝ(ξ−), iξ− ĝ(ξ−) under the integral in (8), gives, with Y± := ∇ f g∗ ± f ∇g∗ ,

∇̂ Q +(ξ) = iξ Q̂ +(ξ) = 1

2

∫ ∫ ∫
SN−1×RN ×RN

B(ξ̂ · n)
{

Y+ + Pn,ξ [Y−]}e−i(v·ξ++v∗·ξ−) dσ(n)dv dv∗

= 1

2

∫ ∫
RN×RN

( ∫
SN−1

ei|ξ |(q·n)B(ξ̂ · n)
{

Y+ + Pn,ξ [Y−]} dσ(n)

)
e−iξ ·(v+v∗)/2 dv dv∗.

Next, we apply a particular change of variables — which has been designed by Bobylëv [1] — inside the n-integral to
exchange the roles of ξ and q. For the corresponding treatment of the projection operator, we need

Lemma 2.3. For arbitrary vectors q, ξ ∈ R
N \ {0}, and for any measurable function A : [−1,1] × [−1,1] → R, one has∫

SN−1

A(q̂ · n, ξ̂ · n)q̂ ∧ n dσ(n) = −
∫

SN−1

A(ξ̂ · n, q̂ · n)ξ̂ ∧ n dσ(n). (9)

In fact, both (matrix-valued) integrals are multiples of ξ ∧ q, and vanish if ξ and q are linearly dependent.

Before proving (9), we show that it indeed concludes the calculation started above. First, observe that (notice the change
of order in the subscripts)

Pn,ξ = (n · ξ̂ )1 − n ∧ ξ̂ and Pq,n = (n · q̂)1 + n ∧ q̂.

We substitute (9) under the n-integral above and observe that its value does not change upon replacing n by its mirror
image in the hyperplane orthogonal to ξ̂–q̂,

∇̂ Q +(ξ) = 1

2

∫ ∫
RN×RN

( ∫
SN−1

ei|q|(ξ ·n)B(q̂ · n)
{

Y+ + Pq,n[Y−]} dσ(n)

)
e−iξ ·(v+v∗)/2 dv dv∗

= 1

2

∫ ∫
SN−1×RN ×RN

B(q̂ · n)
{

Y+ + Pq,n[Y−]}dσ(n)e−iξ ·v ′
dv dv∗.

Formula (4) is now obtained by performing a change of variables (v, v∗) ↔ (v ′, v ′∗) under the integral. This substitution is
of determinant one, it changes Y± into Y ′± , and it exchanges q̂ with n as desired.

Proof of Lemma 2.3. Let X ⊂ R
N be the subspace spanned by ξ and q. Denote its orthogonal complement by X⊥ . We start

by proving the second claim, namely that

I :=
∫

SN−1

A(q̂ · n, ξ̂ · n)q̂ ∧ n dσ(n) and J :=
∫

SN−1

A(ξ̂ · n, q̂ · n)ξ̂ ∧ n dσ(n)

are both scalar multiples of ξ ∧ q. Obviously, I and J inherit the anti-symmetry of their integrands, so

vT I w = −wT I v and vT J w = −wT J v (10)

holds for arbitrary v, w ∈ R
N . We shall now show that these products are actually zero whenever w ∈ X⊥ . Indeed, for

w ∈ X⊥ ,

I w =
∫

SN−1

A(q̂ · ñ, ξ̂ · ñ)q̂nT w dσ(n). (11)

Perform a change of variables n = RT ñ with an orthogonal matrix R under the integral such that Rx = x for x ∈ X and
R y = −y for y ∈ X⊥ . This change leaves the spherical measure invariant, and the integrand in (11) changes to

A
(
q̂ · RT ñ, ξ̂ · RT ñ

)
q̂
(

RT ñ
)T

w = A(Rq̂ · ñ, R ξ̂ · ñ)q̂ñT (R w) = −A(q̂ · ñ, ξ̂ · ñ)q̂ñT w,

which shows I w = −I w = 0. Thus I is an anti-symmetric matrix that is trivial on X⊥ . But the space of anti-symmetric
matrices on X is (at most) one-dimensional, and is spanned by q ∧ ξ . So I and — by a similar argument — J are scalar
multiples of q ∧ ξ . To prove (9), consider another orthogonal change of variables n = Rñ, in which R ξ̂ = q̂ and Rq̂ = ξ̂ . We
find
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I =
∫

SN−1

A
(
q̂ · RT ñ, ξ̂ · RT ñ

)
q̂ ∧ (

RT ñ
)

dσ(ñ) =
∫

SN−1

A(Rq̂ · ñ, R ξ̂ · ñ)RT (
(Rq̂) ∧ ñ

)
R dσ(ñ) = RT J R.

Since RT (q ∧ ξ)R = ξ ∧ q = −q ∧ ξ , it follows that I = − J . �
3. Estimate on the Fisher information

In order to arrive at (3), we employ (4) in the same way as done in [2]. We adopt the abbreviations f ′ = f (v ′), g′∗ =
g(v ′∗), etc. By definition of Q + , and since B is a Maxwellian kernel, the quotient B(n · q̂) f ′ g′∗/Q +[ f , g] defines — for
every v — a probability density for integration w.r.t. dv∗ dσ(n). Now rewrite the quotient ∇ Q +[ f , g]/Q +[ f , g] using (4)
and apply Jensen’s inequality to find∣∣∣∣∇ Q +(v)

Q +(v)

∣∣∣∣2

� 1

4

∫ ∫
RN ×SN−1

∣∣∣∣ Y ′+ + Pn,q[Y ′−]
f ′g′∗

∣∣∣∣2 B(n · q̂) f ′g′∗
Q +(v)

dv∗ dσ(n).

Multiply this expression by Q +[ f , g], integrate w.r.t. v , and change variables (v, v∗) ↔ (v ′, v ′∗) again to obtain an estimate
on the Fisher information:

F
[

Q +[ f , g]] � 1

2

∫ ∫ ∫
RN ×RN×SN−1

B(q̂ · n)
|Y+ + Pq,n[Y−]|2

2 f g∗
dσ(n)dv dv∗. (12)

To finish the proof, two properties of the operators P are needed: the first is simply

Pq,n + PT
q,n = 2(q̂ · n)1, (13)

which follows from the anti-symmetry (q̂ ∧ n)T = −q̂ ∧ n. The second is taken from [2, Lemmata 3 and 4]:

Lemma 3.1. For arbitrary vectors a,b ∈ R
N \ {0} and x ∈ R

N ,∣∣Pab[x]
∣∣ � |x|. (14)

Expand the square under the integral in (12), using (14) and (13):

|Y+ + Pq,n[Y−]|2
2 f g∗

= |Y+|2 + |Pq,n[Y−]|2 + Y+ · (Pq,n + PT
q,n)[Y−]

2 f g∗
� |Y+|2 + |Y−|2 + 2(q̂ · n)Y+ · Y−

2 f g∗
= |∇√

f |2 g∗ + f |∇√
g∗|2 + (q̂ · n)

{|∇√
f |2 g∗ − f |∇√

g∗|2
}
.

To arrive at (3), insert this expansion into (12), use the Maxwell property (2), the definition of λB in (3), and the fact that
f and g are probability densities.
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