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In this Note, we prove that all the components of a d-symmetric classical d-orthogonal
are classical and in the case where the sequence is m-symmetric and d-orthogonal, we
prove that the first component of an m-symmetric classical d-orthogonal is classical. That
generalized the Douak and Maroni (1992) [8] results for the case m = d. Then we discuss,
as far as we know, a new symmetric classical 3-PS.
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r é s u m é

Dans cette Note, on montre que les composantes d’une suite d-symétrique d-orthogonale
et classique sont aussi classiques. Dans le cas où la suite est d-orthogonale classique et
m-symétrique, on montre que la première composante est d-orthogonale classique. On
généralise ainsi les résultats de Douak et Maroni (1992) [8]. On donne à la fin de cette
note un exemple d’une nouvelle suite 3-orthogonale symétrique classique.

© 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let P be the vector space of polynomials with coefficients in C and let P ′ be its algebraic dual. A polynomial sequence
{Pn}n�0 in P is called a polynomial set (PS, for shorter) if deg Pn = n for all integer n. We denote by 〈u, f 〉 the effect of the
linear functional u ∈ P ′ on the polynomial f ∈ P . A natural extension of the notion of orthogonality was introduced by Van
Iseghem [14] and Maroni [9] as follows:

Definition 1.1. Let d be a positive integer and let {Pn}n�0 be a PS in P . {Pn}n�0 is called a d-orthogonal polynomial set
(d-OPS, for shorter) with respect to the d-dimensional functional vector Γ = t(Γ0,Γ1, . . . ,Γd−1) if it satisfies the following
conditions:{ 〈Γk, Pm Pn〉 = 0, m > nd + k, n � 0, k = 0, . . . ,d − 1,

〈Γk, Pn Pnd+k〉 �= 0, n � 0.

For the particular case d = 1, we meet the well known notion of orthogonality [7].
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Definition 1.2. Let m be a nonnegative integer. A PS {Pn}n�0 is called m-symmetric if Pn(wx) = wn Pn(x) for all n, where

w = e
2iπ

m+1 an (m + 1)-root of the unity.

For the particular case: m = 1, we meet the well-known notion of symmetric PS [7]. A characteristic property of m-
symmetric PS is given by the following:

Proposition 1.3. A PS {Pn}n�0 is m-symmetric if and only if there exist (m + 1) PSs {P k
n}n�0 , k = 0, . . . ,m, such that P (m+1)n+k(x) =

xk Pk
n(xm+1), n � 0.

The PSs {Pk
n}n�0, k = 0, . . . ,m, are called the components of the m-symmetric PS {Pn}n�0.

There exist in the literature many works dealing with m-symmetric d-orthogonal polynomials for particular couples
(m,d). One of the main questions related to this notion asks to find properties satisfied by the components and correspond-
ing to fixed ones satisfied by the involved m-symmetric d-OPS.

The case (m,d) = (1,1) is widely known (see, for instance, Chihara [7]). The case (m,d) = (m,1), m > 1, corresponds to
the orthogonality on certain sets in the complex domain and having some symmetrical properties. This case was investigated
by Ben Cheikh [1] where the author unified some previous works written by Carlitz [6], Milovanovič [11], Marcellàn and
Sansigre [10] and Ricci [12]. The case (m,d) = (d,d), d > 1, was initiated by Douak and Maroni [8] where the authors char-
acterized the d-symmetric d-OPSs by means of a lacunary (d + 1)-order recurrence relation and showed the d-orthogonality
of the components. Other results for these polynomials were derived by Ben Cheikh and Douak [2] and Ben Cheikh and
Gaied [5]. In [4], the authors gave some characteristic properties for the d-symmetric classical d-orthogonal polynomials
related to generating functions and recuro-differential equation. The aim of this Note is to generalize some results obtained
by Douak and Maroni [8] to the case (m,d) where d > 1 and m � d. Without loosing the generality, in which follows we
assume that the polynomials Pn , n � 0, are monic.

2. m-Symmetric d-OPSs

2.1. Characterizations of m-symmetric d-OPSs

Let d be a positive integer and m be a nonnegative integer satisfying m � d. Next, we give a necessary condition on m
and d to have an m-symmetric d-OPS and two characterizations of m-symmetric d-OPSs. We denote by X̃k the multiplication
operator by xk in P .

Theorem 2.1. Let {Pn}n�0 be a d-OPS. Then the following properties are equivalent:

(i) The PS {Pn}n�0 is m-symmetric.
(ii) d + 1 is a multiple of m + 1, say d + 1 = p(m + 1), and the PS {Pn}n�0 satisfies a (d + 1)-order recurrence relation of type

X̃ Pn = Pn+1 +
p∑

j=1

γn, j Pn− j(m+1)+1, (1)

with γn,p �= 0 and the convention P−n = 0 for all n � 1.

Proof. (i) ⇒ (ii) Since {Pn}n�0 is a d-OPS, it satisfies a (d + 1)-order recurrence relation of type (cf. [9]):

X̃ Pn = Pn+1 +
d∑

k=0

αk,n−d+k Pn−d+k, α0,n−d �= 0. (2)

Take the polynomials in (2) at wx, and use the fact that the PS {Pn}n�0 is m-symmetric, we obtain

X̃ Pn = Pn+1 +
d∑

k=0

αk,n−d+k wk−d−1 Pn−d+k. (3)

Comparing the coefficients of Pn−d in (2) and (3) we deduce that wd+1 = 1 since α0,n−d �= 0. It follows then d + 1 is a
multiple of m + 1. If we compare the coefficients of Pn−d−k in (2) and (3) we deduce that

X̃ Pn = Pn+1 +
p−1∑
j=0

α j(m+1),n−d+ j(m+1) Pn−d+ j(m+1) = Pn+1 +
p∑

j=1

γn, j Pn− j(m+1)+1, with γn,p �= 0.

(ii) ⇒ (i) From (1) we get P j(x) = x j for 0 � j � m. The result is obtained by induction. �
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2.2. Properties of the components

As an analogue of the Hahn’s characterization for classical polynomials when d = 1, Douak and Maroni [8] introduced
the concept of classical d-orthogonal polynomials as follows:

Definition 2.2. A PS {Pn}n�0 is called classical d-orthogonal if and only if both {Pn}n�0 and {(1/(n + 1))P ′
n+1}n�0 are

d-orthogonal.

They showed that if {Pn}n�0 is a d-symmetric d-OPS, all the components {P k
n}n�0, k = 0, . . . ,d, are d-orthogonal and

if moreover {Pn}n�0 is classical, the first component P 0
n is classical. In this subsection, we generalize these two results

by proving that they remain true for m-symmetric d-OPS and we improve the second one by proving that all the d + 1
components are classical.

Theorem 2.3. Let {Pn}n�0 be an m-symmetric d-OPS. Then its components {P k
n}n�0 , k = 0, . . . ,m, are d-orthogonal.

Proof. Since {Pn}n�0 is an m-symmetric d-OPS, it verifies the following recurrence relation:

X̃ Pn = Pn+1 +
p∑

j=1

α j,n Pn+1− j(m+1), αp,n−d �= 0. (4)

We apply the operator X̃ on both sides of (4) and we replace X̃ Pq by a relation of type (4). We obtain a relation of type

X̃2 Pn = Pn+2 + ∑2p
j=1 α2, j,n Pn+2− j(m+1) , with α2,2p,n �= 0. By iteration, we deduce that for all r ∈ N and n � rd

X̃r Pn = Pn+r +
rp∑

j=1

αr, j,n Pn+r− j(m+1) (5)

with αr,rp,n �= 0. Thus X̃m+1 Pn(m+1)+k = P (n+1)(m+1)+k + ∑p(m+1)=d+1
j=1 αm+1, j,n(m+1)+k P (n− j+1)(m+1)+k , which is equiva-

lent to X̃m+1 Pn(m+1)+k = P (n+1)(m+1)+k + ∑d
j=0 α j,n−d+ j P (n−d+ j)(m+1)+k , with α0,n−d �= 0. It results that xm+1 Pk

n(xm+1) =
Pk

n+1(xm+1)+∑d
j=0 α j,n−d+ j Pk

n−d+ j(xm+1), with α0,n−d �= 0. In other words X̃ Pk
n = Pk

n+1 +∑d
j=0 α j,n−d+ j Pk

n−d+ j , α0,n−d �= 0.

Then {Pk
n}n�0, k = 0, . . . ,m, is a d-OPS. �

2.2.1. Classical d-OPSs
Douak and Maroni showed in [8] that if {Pn}n�0 is a d-symmetric classical d-OPS, then the first component {P 0

n}n�0

is classical. Next, we prove that all the components {P k
n}n�0, k = 0, . . . ,d, are classical and if {Pn}n�0 is m-symmetric and

classical, we prove that the first component is classical. We state the following:

Theorem 2.4. If {Pn}n�0 is a d-symmetric classical d-OPS, then its components {P k
n}n�0 , k = 0, . . . ,d, are classical d-orthogonal.

Proof. Since {Pn}n�0 and {An = (1/(n + 1))P ′
n+1}n�0 are d-symmetric d-orthogonal, it results from Theorem 2.3 that the

families {Pk
n}n�0 and {Ak

n}n�0 are d-orthogonal, k = 0, . . . ,d. Our goal here is to prove that the family {P k
n}n�0 is classical.

It is enough to prove that the PS {K k
n = (1/(n + 1))(Pk

n+1)
′}n�0 verifies a recurrence relation of type (2).

Case k = 0. We recall that P 0
n+1(xd+1) = P (n+1)(d+1)(x). Then taking derivatives in both sides of this relation, we obtain:

xd K 0
n

(
xd+1) = A(n+1)(d+1)−1(x). (6)

Since {An}n�0 is d-symmetric and d-orthogonal, we replace in (5) r by d + 1 and n by (n + 1)(d + 1) − 1, we have:

X̃d+1 A(n+1)(d+1)−1 = A(n+2)(d+1)−1 +
d∑

j=1

β j,(n+2− j)(d+1) A(n+2− j)(d+1)−1 + γn−d A(n+1−d)(d+1)−1

= A(n+2)(d+1)−1 +
d∑

j=1

βd+1− j,(n−d+ j+1)(d+1) A(n−d+ j+1)(d+1)−1,

with βd+1,(n−d+1)(d+1) �= 0. Then xd+1 K 0
n (xd+1) = K 0

n+1(xd+1)+∑d
j=0 βd+1− j,(n−d+ j+1)(d+1) K 0

n−d+ j(xd+1). Thus X̃ K 0
n = K 0

n+1 +∑d
j=0 Cn−d+ j K 0

n−d+ j , Cn−d �= 0, which means that {P 0
n}n�0 is classical and d-orthogonal.

Case k � 1. The PS {Pn}n�0 is classical d-symmetric d-orthogonal, then
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X̃ Pn = Pn+1 + bn−d Pn−d, bn−d �= 0. (7)

Moreover since {An}n�0 is d-symmetric and d-orthogonal, X̃ An = An+1 + an−d An−d , with an−d �= 0. Taking derivatives in
both sides of (7) and xk Pk

n+1(xd+1) = P (n+1)(d+1)+k(x), we obtain:

Pn+1 = An+1 + (
(n + 1 − d)bn+1−d − (n + 1)an−d

)
An−d. (8)

Then kPk
n+1 + (d + 1)(n + 1) X̃ K k

n = ((n + 1)(d + 1) + k)(Ak
n+1 + an(d+1)+k Ak

n).
From (8), we deduce that Pn(d+1)+k = An(d+1)+k + (((n − 1)(d + 1) + k)b(n−1)(d+1)+k − (n(d + 1) + k)a(n−1)(d+1)+k)×

A(n−1)(d+1)+k and then

X̃ K k
n = Ak

n+1 + δn,k Ak
n. (9)

We recall that

X̃ Ak
n = Ak

n+1 +
d∑

j=0

ak,n−d+ j Ak
n−d+ j, with ak,n−d �= 0. (10)

Replace in this equation n by n + 1 and Ak
j+1 by X̃ K k

j − δ j,k Ak
j , to obtain: X̃2 K k

n = X̃ K k
n+1 + ∑d

j=0 bk,n−d+ j X̃ K k
n−d+ j +

ck,n−d−1 Ak
n−d−1. If ck,n−d−1 �= 0 for a suitable n, then Ak

n−d−1(0) = 0, and from (9) Ak
n−d(0) = 0. Then from (10), we deduce

that A1 = 0 which is impossible. �
Theorem 2.5. Let {Pn}n�0 be an m-symmetric classical d-OPS, then its first component {P 0

n}n�0 is a classical d-OPS.

Proof. Since the PS {An}n�0 is m-symmetric d-orthogonal, it fulfills (5). We replace r by m + 1 and n by (n + 1)(m + 1) − 1

in this relation to obtain: X̃m+1 A(n+1)(m+1)−1 = A(n+2)(m+1)−1 + ∑d+1
j=1 γn, j A(n+2− j)(m+1)−1, with γn,n−d �= 0. Thus

X̃m+1 A(n+1)(m+1)−1 = A(n+2)(m+1)−1 +
d∑

j=0

αn−d+ j A(n−d+ j+1)(m+1)−1, (11)

with αn−d �= 0. If we take derivatives in both sides of the relation P 0
n+1(xm+1) = P (n+1)(m+1)(x), we obtain:

xm K 0
n

(
xm+1) = A(n+1)(m+1)−1(x), (12)

with K 0
n = (1/(n + 1))(P 0

n+1)
′ . From (11) and (12) we deduce that xm+1xm K 0

n (xm+1) = xm K 0
n+1(xm+1) + ∑d

j=0 αn−d+ j xm ·
K 0

n−d+ j(xm+1), with αn−d �= 0, which is equivalent to X̃ K 0
n = K 0

n+1 + ∑d
j=0 αn−d+ j K 0

n−d+ j , with αn−d �= 0, and the desired
result follows. �
3. Example

We introduce, as far as we know, a new 3-OPS defined by a generating function. Using the identity 2, Problem 7, p. 213

in [13] and Theorem 1 in [3], one can easily prove that the PS {Pn}n�0 generated by: etm+1
0 Fr

( −
b1,...,br

−xt

)
= ∑∞

n=0 Pn(x)tn

is m-symmetric classical ((m + 1)(r + 1) − 1)-orthogonal. Moreover the corresponding m + 1 components are also classical
((m + 1)(r + 1) − 1)-orthogonal.
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