

Number Theory

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Specialization of monodromy group and ℓ -independence

Spécialisation du groupe de monodromie et *l*-indépendance

Chun Yin Hui

Department of Mathematics, Indiana University, Rawles Hall, 831 E 3rd Street, Bloomington, IN 47405, USA

ARTICLE INFO	ABSTRACT
Article history: Received 13 November 2011 Accepted after revision 21 December 2011 Available online 5 January 2012	Let <i>E</i> be an abelian scheme over a geometrically connected, smooth variety <i>X</i> defined over <i>k</i> , a finitely generated field over \mathbb{Q} . Let η be the generic point of <i>X</i> and $x \in X$ a closed point. If \mathfrak{g}_{ℓ} and $(\mathfrak{g}_{\ell})_X$ are the Lie algebras of the ℓ -adic Galois representations for abelian varieties E_n and E_X , then $(\mathfrak{g}_{\ell})_X$ is embedded in \mathfrak{g}_{ℓ} by specialization. We prove that the set
Presented by Jean-Pierre Serre	{ $x \in X$ closed point $(\mathfrak{g}_{\ell})_x \subsetneq \mathfrak{g}_{\ell}$ } is independent of ℓ and confirm Conjecture 5.5 in Cadoret and Tamagawa [3].
	R É S U M É
	Soit <i>E</i> un schéma abélien sur une variété lisse et géométriquement connexe <i>X</i> , définie sur un corps <i>k</i> de type fini sur \mathbb{Q} . Soit η le point générique de <i>X</i> et soit $x \in X$ un point fermé. Si \mathfrak{g}_{ℓ} et $(\mathfrak{g}_{\ell})_x$ sont les algèbres de Lie des représentations ℓ -adiques de Galois des variétés abéliennes E_{η} et E_x , alors $(\mathfrak{g}_{\ell})_x$ est plongée dans \mathfrak{g}_{ℓ} par spécialisation. Nous démontrons que l'ensemble { $x \in X$ point fermé $(\mathfrak{g}_{\ell})_x \subsetneq \mathfrak{g}_{\ell}$ } est indépendant de ℓ , ce qui confirme la Conjecture 5.5 de Cadoret et Tamagawa [3]. © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *E* be an abelian scheme of relative dimension *n* over a geometrically connected, smooth variety *X* defined over *k*, a finitely generated field over \mathbb{Q} . If *K* is the function field of *X* and η is the generic point of *X*, then $A := E_{\eta}$ is an abelian variety of dimension *n* defined over *K*. The structure morphism $X \to \text{Spec}(k)$ induces at the level of *étale* fundamental groups a short exact sequence of profinite groups:

$$1 \to \pi_1(X_{\bar{k}}) \to \pi_1(X) \to \Gamma_k := \operatorname{Gal}(\bar{k}/k) \to 1.$$
(1)

Any closed point x: Spec($\mathbf{k}(x)$) $\rightarrow X$ induces a splitting x: $\Gamma_{\mathbf{k}(x)} \rightarrow \pi_1(X_{\mathbf{k}(x)})$ of exact sequence (1) for $\pi_1(X_{\mathbf{k}(x)})$.

Let $\Gamma_K = \text{Gal}(\overline{K}/K)$ the absolute Galois group of K. For each prime number ℓ , we have the Galois representation ρ_ℓ : $\Gamma_K \to \text{GL}(T_\ell(A))$ where $T_\ell(A)$ is the ℓ -adic Tate module of A. This representation is unramified over X and factors through $\rho_\ell : \pi_1(X) \to \text{GL}(T_\ell(A))$ (still denote the map by ρ_ℓ for simplicity). The image of ρ_ℓ is a compact ℓ -adic Lie subgroup of $\text{GL}(T_\ell(A)) \cong \text{GL}_{2n}(\mathbb{Z}_\ell)$. Any closed point $x : \text{Spec}(\mathbf{k}(x)) \to X$ induces an ℓ -adic Galois representation of $\Gamma_{\mathbf{k}(x)}$ by restricting ρ_ℓ to $x(\Gamma_{\mathbf{k}(x)})$. This representation is isomorphic to the Galois representation of $\Gamma_{\mathbf{k}(x)}$ on the ℓ -adic Tate module of E_x , the abelian variety over $\mathbf{k}(x)$ that is the specialization of E at x.

E-mail address: chhui@umail.iu.edu.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2011 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2011.12.012

For the sake of simplicity, we write $G_{\ell} := \rho_{\ell}(\pi_1(X))$, $\mathfrak{g}_{\ell} := \operatorname{Lie}(G_{\ell})$, $(G_{\ell})_X := \rho_{\ell}(x(\Gamma_{\mathbf{k}(X)}))$ and $(\mathfrak{g}_{\ell})_X := \operatorname{Lie}((G_{\ell})_X)$. We have $(\mathfrak{g}_{\ell})_X \subset \mathfrak{g}_{\ell}$. We set X^{cl} the set of closed points of X and define the exceptional set

$$X_{\rho_{E,\ell}} := \{ x \in X^{cl} | (\mathfrak{g}_{\ell})_x \subsetneq \mathfrak{g}_{\ell} \}.$$

The main result (Theorem 2.5) of this note is that the exceptional set $X_{\rho_{E,\ell}}$ is independent of ℓ . Conjecture 5.5 in Cadoret and Tamagawa [3] is then a direct application of our theorem.

2. ℓ -independence of $X_{\rho_{E,\ell}}$

Theorem 2.1. (See Serre [6], §1.) Let A be an abelian variety defined over a field K finitely generated over \mathbb{Q} and let $\Gamma_K = \text{Gal}(\overline{K}/K)$. If $\rho_\ell : \Gamma_K \to \text{GL}(T_\ell(A))$ is the ℓ -adic representation of Γ_K , then the Lie algebra \mathfrak{g}_ℓ of $\rho_\ell(\Gamma_K)$ is algebraic and the rank of \mathfrak{g}_ℓ is independent of the prime ℓ .

Remark 2.2. When *K* is a number field, the algebraicity of the ℓ -adic Lie algebra \mathfrak{g}_{ℓ} was proven by Bogomolov [1]. When *K* is a global field of finite characteristic > 2, the rank independence on ℓ was proven by Zarhin [7].

Since $V_{\ell} := T_{\ell}(A) \otimes_{\mathbb{Z}_{\ell}} \mathbb{Q}_{\ell}$ is a semisimple Γ_{K} -module (Faltings [4]), the action on V_{ℓ} of the Zariski closure \mathfrak{G}_{ℓ} of $\rho_{\ell}(\Gamma_{K})$ in $GL_{V_{\ell}}$ is also semisimple. Therefore \mathfrak{G}_{ℓ} is a reductive algebraic group (Borel [2]). By Theorem 2.1, \mathfrak{g}_{ℓ} is algebraic. So the rank of \mathfrak{g}_{ℓ} is just the dimension of maximal tori in \mathfrak{G}_{ℓ} . We need two more theorems, the first one is the Tate conjecture for abelian varieties proved by G. Faltings and the second one is a result of Yu.G. Zarhin on algebraic reductive Lie algebras.

Theorem 2.3. (See Faltings [4].) Let A be an abelian variety defined over a field k that is finitely generated over \mathbb{Q} and let $\Gamma_k = \text{Gal}(\bar{k}/k)$. Then the map $\text{End}_k(A) \otimes_{\mathbb{Z}} \mathbb{Q}_\ell \to \text{End}_{\Gamma_k}(V_\ell(A))$ is an isomorphism.

Theorem 2.4. (See Zarhin [8], §5.) Let V be a finite dimensional vector space over a field of characteristic 0. Let $\mathfrak{g}_1 \subset \mathfrak{g}_2 \subset \operatorname{End}(V)$ be Lie algebras of reductive subgroups of GL_V . Let us assume that the centralizers of \mathfrak{g}_1 and \mathfrak{g}_2 in $\operatorname{End}(V)$ are equal and that the ranks of \mathfrak{g}_1 and \mathfrak{g}_2 are equal. Then $\mathfrak{g}_1 = \mathfrak{g}_2$.

We are now able to prove our main theorem:

Theorem 2.5. The set $X_{\rho_F,\ell}$ is independent of ℓ .

Proof. Suppose $x \in X^{cl} \setminus X_{\rho_{\ell}}$, then $(\mathfrak{g}_{\ell})_x = \mathfrak{g}_{\ell}$. It suffices to show $\mathfrak{g}_{\ell'} = (\mathfrak{g}_{\ell'})_x := \text{Lie}(\rho_{\ell'}(x(\Gamma_{\mathbf{k}(x)})))$ for any prime number ℓ' . Since base change with finite field extension of $\mathbf{k}(x)$ does not change the Lie algebras, $\text{End}_{\bar{k}}(E_x)$ is finitely generated, and we have the exponential map from Lie algebras to Lie groups, we may assume that $\text{End}_{\bar{k}}(E_x) = \text{End}_k(E_x)$ and $\text{End}_{\Gamma_k}(V_{\ell}(E_x)) = \text{End}_{(\mathfrak{g}_{\ell})_x}(V_{\ell}(E_x))$. We do the same for the abelian variety E_{η}/K . We therefore have

$$\dim_{\mathbb{Q}_{\ell'}} \left(\operatorname{End}_{\mathfrak{g}_{\ell'}} \left(V_{\ell'}(E_{\eta}) \right) \right) \stackrel{1}{=} \dim_{\mathbb{Q}_{\ell'}} \left(\operatorname{End}_{K}(E_{\eta}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell'} \right)$$

$$\stackrel{2}{=} \dim_{\mathbb{Q}_{\ell}} \left(\operatorname{End}_{K}(E_{\eta}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \right) \stackrel{3}{=} \dim_{\mathbb{Q}_{\ell}} \left(\operatorname{End}_{\mathfrak{g}_{\ell}} \left(V_{\ell}(E_{\eta}) \right) \right)$$

$$\stackrel{4}{=} \dim_{\mathbb{Q}_{\ell}} \left(\operatorname{End}_{(\mathfrak{g}_{\ell})_{X}} \left(V_{\ell}(E_{X}) \right) \right) \stackrel{5}{=} \dim_{\mathbb{Q}_{\ell}} \left(\operatorname{End}_{k}(E_{X}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell} \right)$$

$$\stackrel{6}{=} \dim_{\mathbb{Q}_{\ell'}} \left(\operatorname{End}_{k}(E_{X}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell'} \right) \stackrel{7}{=} \dim_{\mathbb{Q}_{\ell'}} \left(\operatorname{End}_{(\mathfrak{g}_{\ell'})_{X}} \left(V_{\ell'}(E_{X}) \right) \right).$$

Theorem 2.3 implies the first, third, fifth and seventh equalities. The dimensions of \mathbb{Q}_{ℓ} -vector spaces $\operatorname{End}_{K}(E_{\eta}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}$ and $\operatorname{End}_{k}(E_{\chi}) \otimes_{\mathbb{Z}} \mathbb{Q}_{\ell}$ do not depend on ℓ ; this implies the second and the sixth equalities. Equality $\mathfrak{g}_{\ell} = (\mathfrak{g}_{\ell})_{\chi}$ implies the fourth equality.

We have $\operatorname{End}_{\mathfrak{g}_{\ell'}}(V_{\ell'}(E_\eta)) = \operatorname{End}_{(\mathfrak{g}_{\ell'})_{\chi}}(V_{\ell'}(E_{\chi}))$ because the left one is contained in the right one. In other words, the centralizer of $(\mathfrak{g}_{\ell'})_{\chi}$ is equal to the centralizer of $\mathfrak{g}_{\ell'}$. We know that $(\mathfrak{g}_{\ell'})_{\chi} \subset \mathfrak{g}_{\ell'}$ are both reductive, thanks to the semisimplicity of the corresponding Galois representations (Faltings [4]). By Theorem 2.1 on ℓ -independence of reductive ranks and equality $\mathfrak{g}_{\ell} = (\mathfrak{g}_{\ell})_{\chi}$,

 $\operatorname{rank}(\mathfrak{g}_{\ell'}) = \operatorname{rank}(\mathfrak{g}_{\ell}) = \operatorname{rank}(\mathfrak{g}_{\ell})_{\chi} = \operatorname{rank}(\mathfrak{g}_{\ell'})_{\chi}.$

Therefore, by Theorem 2.4 we conclude that $(\mathfrak{g}_{\ell'})_x = \mathfrak{g}_{\ell'}$ and thus prove the theorem. \Box

Corollary 2.6. (Conjecture 5.5 of [3].) Let k be a field that is finitely generated over \mathbb{Q} , X a smooth, separated, geometrically connected curve over k with the field of rational function K. Let η be the generic point of X and E an abelian scheme over X. Let $\rho_{\ell} : \pi_1(X) \rightarrow GL(T_{\ell}(E_{\eta}))$ be the corresponding ℓ -adic representation. Then there exists a finite subset $X_E \subset X(k)$ such that for any prime ℓ , $X_{\rho_{E,\ell}} = X_E$, where $X_{\rho_{E,\ell}}$ is the set of all $x \in X(k)$ such that $(G_{\ell})_x$ is not open in $G_{\ell} := \rho_{\ell}(\pi_1(X))$.

Proof. The uniform open image theorem for *GLP* (geometrically Lie perfect) representations ([3], Thm. 1.1) implies the finiteness of $X_{\rho_{F,\ell}}$. Theorem 2.5 implies ℓ -independence. \Box

Corollary 2.7. Let A be an abelian variety of dimension $n \ge 1$ defined over a field K that is finitely generated over \mathbb{Q} . Let $\Gamma_K = \text{Gal}(\overline{K}/K)$ denote the absolute Galois group of K. For each prime number ℓ , we have the Galois representation $\rho_{\ell} : \Gamma_K \to \text{GL}(T_{\ell}(A))$ where $T_{\ell}(A)$ is the ℓ -adic Tate module of A. If the Mumford–Tate conjecture for abelian varieties over number fields is true, then there is an algebraic subgroup H of GL_{2n} defined over \mathbb{Q} such that the identity component of the Zariski closure of $\rho_{\ell}(\Gamma_K)$ in $\text{GL}_{2n}(V_{\ell}(A))$ is equal to $H \times_{\mathbb{Q}} \mathbb{Q}_{\ell}$ for all ℓ .

Proof. There exists an abelian scheme *E* over a variety *X* defined over a number field *k* such that the function field of *X* is *K* and $E_{\eta} = A$ where η is the generic point of *X* (see, e.g., Milne [5], §20). By [6], §1, there exists a closed point $x \in X$ such that $(\mathfrak{g}_{\ell})_x = \mathfrak{g}_{\ell}$. Therefore, we have $(\mathfrak{g}_{\ell})_x = \mathfrak{g}_{\ell}$ for any prime ℓ by Theorem 2.5. Since all Lie algebras are algebraic (Theorem 2.1), if we take *H* as the Mumford–Tate group of E_x , then the identity component of the Zariski closure of $\rho_{\ell}(\Gamma_K)$ in $GL_{2n}(V_{\ell}(A))$ is equal to $H \times_{\mathbb{Q}} \mathbb{Q}_{\ell}$ for all ℓ . \Box

Question. Is the algebraic group *H* in Corollary 2.7 isomorphic to the Mumford–Tate group of the abelian variety *A*?

Acknowledgements

This work grew out of an attempt to prove Conjecture 5.5 in [3] suggested by my advisor, Professor Michael Larsen. I am grateful to him for the suggestion, guidance and encouragement. I would also like to thank Professor Anna Cadoret for her useful comments on an earlier version of this note. Remark 2.2 was suggested to us by the referee.

References

- [1] F.A. Bogomolov, Sur l'algébricité des représentations ℓ-adiques, C. R. Acad. Sci. Paris, Ser. I 290 (1980) 701-703.
- [2] A. Borel, Linear Algebraic Groups, Graduate Texts in Mathematics, vol. 126, 2nd ed., Springer-Verlag, 1991.
- [3] A. Cadoret, A. Tamagawa, A uniform open image theorem for ℓ -adic representations I, preprint.
- [4] G. Faltings, Complements to Mordell, in: G. Faltings, G. Wüstholz (Eds.), Rational Points, Seminar Bonn/Wuppertal, 1983–1984, Vieweg, 1984, Chapter 6.
- [5] J.S. Milne, Jacobian varieties, in: Arithmetic Geometry, Springer-Verlag, New York, 1986.
- [6] J.-P. Serre, Letter to K.A. Ribet, Jan. 1, 1981, reproduced in Collected Papers, vol. IV, no. 133.
- [7] Yu.G. Zarhin, Abelian varieties, ℓ -adic representations and Lie algebras. Rank independence on ℓ , Invent. Math. 55 (1979) 165–176.
- [8] Yu.G. Zarhin, Abelian varieties having a reduction of K3 type, Duke Math. J. 65 (1992) 511-527.