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RESUME

Nous réalisons le feuilletage de Reeb comme une famille de sous-variétés legendriennes de
la spheére unité S° dans C3. Par ailleurs, nous construisons une déformation de la structure
de contact canonique S dans S° via une famille de sous-variétés de contact, aboutissant
au feuilletage ainsi réalisé.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Reeb foliation is a codimension one smooth foliation of the 3-sphere S3 obtained by gluing two Reeb components
S x D% and D? x S!. Since the one-sided holonomies of the Reeb components along {1} x dD? and dD? x {1} are trivial,
the Reeb foliation is not analytic (“Haefliger’s remark”).

On the other hand the 1-jet space J!(R", R) ~ R2"*! for a function of n variables carries the canonical contact struc-
ture. It is contactomorphic to the unit sphere S?**! ¢ C**! minus any point. Here S?"+! has the standard contact form
o =Y 1t r2de; s (r; = |z, 6; = argz; for coordinates z; of C™*'). Thus we may regard a codimension-n submanifold
M1 c §2n41 35 a system of n first-order partial differential equations (for implicit functions). If & A do|M™! =0 and
a|M"1 £ 0, the system is completely integrable and regular, and therefore defines a codimension one foliation F on M™*1.
The leaves of F are Legendrian submanifolds of $*™*! corresponding to the solutions.

In this article we construct an embedding of S3 into the standard S® so that the image has the Reeb foliation F by
Legendrian submanifolds. This example shows that even a non-taut foliation can be a family of Legendrian submanifolds of
JY(R™, R). Moreover we prove
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Fig. 1. The curve C; on A and its parametrization by s.

Theorem 1.1. There exists a smooth family {M?}[e[og/z) of codimension-2 submanifolds of S° such that

(1) M3 is the standard S3(c C2 c C3),

(2) Mt3 is an embedded contact submanifold for 0 <t < 1,

B)M f admits a Reeb foliation by injectively immersed Legendrian submanifolds of S°, and
(4) —M? is an embedded overtwisted contact submanifold for 1 <t < 3/2.

The foliated submanifold M? is obtained by joining two great circles {r; =1}, {r, =1} C S° through the Legendrian torus
T={ri=ry=r3=1//3, 61 + 62 + 63 =0}. The family M? is obtained as a byproduct in the process of isotoping M; C S
to the unknot. The author is seeking the converse approach, i.e., to find a foliated submanifold by using contact topology or
open-books (see Remark 1 in Section 2).

2. Proof and remark

Proof. Let 7 be the natural projection of S> to the 2-simplex A = {(rl,r2 ) | rl + r2 + r3 =1} c R3, which sends the
Legendrian 2-torus T ={ri =ry =r3 = 1/\/—, 01 + 6, + 63 =0} C S to the barycenter G. The set I' = m~1(dA) contains
the great circles 7 ~1({Vy, V2, V3}) where V; denotes the vertex r,.2 =1. Except them m|I" is a T2-fibration. On the other

hand, 7 |(S5\ I") is a T3-fibration. Now we take the coordinates (x, y) on A by putting 0P = 0G +xGV; +yGV> for P € A,
ie.,

37 =14+2x—y(>0), 3ri=1-x+2y(>0), and 3r3=1-x—y(0).

Let M3 be the standard S3 = 7 ~1(V;V;). We deform M3 with the help of a certain family of simple curves C;: x = x;(s),
y= y[(s) —38 < s <6 depicted in Fig. 1 (0<d«1,0< t < 3/2). Note that C; has a break point G while x1(s) and y1(s)
are smooth on (-4, §).

We generate M? cs? by moving the intersection of the “wall” Ws = cl{6; + 62 + 03 = s} C S> with the fiber
71 (% (5), ye(5)) for —8 < s < 8. Then we can see that M? realizes the join of two large circles 7 ~1(V,) and 7 ~1(Vy).
Now we give a precise definition of the curve C;. Put ¢o(u) = %(1 +u) for u € [—1, 1], and take a smooth function ¢q(u)
and a smooth odd function s(u) such that

p1w)=0 (-1<u<0), Piw) >0 (0<u<), 1) =po(u) (1/2<u<),
sSw>0 (-1<u<1, s(1) =6, s(=1)=-6, and s(u)is C*-tangentto =4 §.

The inverse function u(s) of s(u) is defined on [—§, §]. It is smooth on (=8, §) (u'(£8) = +00). We put ¢ (1) = (1—t)@o(u) +
typ1(u), and take the curve

Ce: x=x:() = (u(s)), y=y:(8) =@(u(=s), —8<s<3.

Next we show that M? is a smooth submanifold. By moving the 2-torus (M[3 \ ") NW; for —§ <s <8, we see that
M3\ I is diffeomorphic to T? x (=8, §). Moreover M} is topologically the join S' x S' ~ S3. Thus it only remains for us to
examine the smoothness of M? along M? N I". We restrict ourself to the connected component of M? N I" corresponding to
s =434 and omit the other component. We put

ri+ri+ri=1,
1
~ |3 =1--a+w+Qa-t)1-u),
7R 2

32 21— tasrw-12ta_uw=
3702 2 -
01+62+63=1

-3r2,
3-2t 2
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where u € [1/2,1] is a parameter to be eliminated. Then {6; = const} C I\’/E is a smooth disk since it tangents to the real
2-plane {z; = exps/—161, z3=12; - \/gexp {+/=1(1 —61)}} ¢ C? at u = 1. Since the function s(u) smoothly tangents to &
at u =1, M? is a smooth 3-sphere.

Next we consider the (non-)integrability of the restriction A; = oth? of the standard contact form o = r% do; + r% dé, +
r2dos|S°. Using (61, 62, 5) as coordinates of M? \ I', we can write

At =x¢(s)dO1 + ye(s)dba + (1 — x¢(5) — ye(s)) ds.

Here the sign of A; A di; with respect to df; A df, A ds > 0 coincides with that of x{(s)y:(s) — x:(s)y;(s), and that of
1 —t. More generally, if a submanifold M3(~ T2 x R) C S° is presented by a simple curve C: x = x(s), y = y(s) on int A,
the negative areal velocity x'(s)y(s) — x(s)y’(s) still presents the non-integrability of «|M3. In the case where t =1, the
integrability means the vanishing of the areal velocity. That is why the curve C; is broken into two rays to/from the
origin G, and M-;’ is non-analytic.

On the other hand, for cylindrical coordinates (61, (r2,62)), (Ut = oth[3 and ¢ A dpu; are written as

3 3(1-1) , 6(1—1t)
=(1-——r2)do —r5df, and Aduy = ————=db1 A (i dry AdBs).
Mt < 3—2t2> 1+3—2t 5 do; e A djpe = ——— = dor (r2dry 2)
This implies that the sign of A; A dA; everywhere coincides with that of 1 —t.
Now we show that the foliation of Mf is a Reeb foliation. The definition of Mf is

3rf =14 201 (u(s)) — @1 (u(-s)),
313 =1 — 1 (u(s)) + 21 (u(-9)),
33 =1-g1(u(s) — g1 (u(=9)),
01 +62+03=s

where s € [—4§, 8] is a parameter to be eliminated. On the open solid torus H = {s > 0} C M3, we have

aH = @1 (u(s)) doy + {1 — @1 (u(s))} ds.

Thus the surface of 6,-revolution of the graph of 6; = [ % ds is a leaf. Similarly, we can describe the foliation on

{s < 0}. These foliations spiral into T and form a transversely oriented Reeb foliation, to which the positive Hopf link
{r1 =1} U {r; = 1} is positively transverse.

Finally we see from d(6; +6;) AdAs = {x;(5) — y;(s)} d61 AdB, Ads > 0 (t # 1) that the positive Hopf band ker(d6; + d6,)
is a supporting open-book for 0 <t < 1. On the other hand, the negative Hopf band ker(—d6; — d6;) on —M;(~ S3) is
a supporting open-book for 1 <t < 3/2. Thus —M? is overtwisted. Indeed it has the half-Lutz tube {x;(s) < 0}. Moreover,
since we can reverse the orientation of S3 by a diffeotopy, we obtain the following “negative stabilization” lemma. This ends
the proof.

Lemma 2.1. The overtwisted contact submanifold — M3 14CS > is diffeotopic to the standard S* C S°. Particularly —M?3 1418 differential
topologically unknotted, but contact topologically knotted.

Remark 1. Any closed oriented 3-manifold admits an open-book decomposition (Alexander [1]). We can associate to it a
contact structure (Thurston and Winkelnkemper [8]) as well as a spinnable foliation (see [5]). Further any contact structure
is supported by an open-book decomposition (Giroux [3]). Using this result, the author constructed a certain immersion
of any contact 3-manifold into J!(R2,R) or S® [6]. This construction was generalized to any dimension, ie., MZ*! —
JYR?" R) or $4*1 by Martinez Torres [4]. The author proved that any/some contact structure of M3 can be deformed into
some/any spinnable foliation ([5], see also [2]). He also proved that a certain higher dimensional contact structure can be
deformed into a foliation [7]. It is interesting to generalize the present result to these cases.
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