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Differential Geometry

The Reeb foliation arises as a family of Legendrian submanifolds at the
end of a deformation of the standard S3 in S5
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We realize the Reeb foliation of S3 as a family of Legendrian submanifolds of the unit
S5 ⊂ C

3. Moreover, we construct a deformation of the standard contact S3 in S5, via a
family of contact submanifolds, into this realization.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous réalisons le feuilletage de Reeb comme une famille de sous-variétés legendriennes de
la sphère unité S5 dans C

3. Par ailleurs, nous construisons une déformation de la structure
de contact canonique S3 dans S5 via une famille de sous-variétés de contact, aboutissant
au feuilletage ainsi réalisé.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Reeb foliation is a codimension one smooth foliation of the 3-sphere S3 obtained by gluing two Reeb components
S1 × D2 and D2 × S1. Since the one-sided holonomies of the Reeb components along {1} × ∂ D2 and ∂ D2 × {1} are trivial,
the Reeb foliation is not analytic (“Haefliger’s remark”).

On the other hand the 1-jet space J 1(Rn,R) ≈ R
2n+1 for a function of n variables carries the canonical contact struc-

ture. It is contactomorphic to the unit sphere S2n+1 ⊂ C
n+1 minus any point. Here S2n+1 has the standard contact form

α = ∑n+1
i=1 r2

i dθi |S2n+1 (ri = |zi |, θi = arg zi for coordinates zi of C
n+1). Thus we may regard a codimension-n submanifold

Mn+1 ⊂ S2n+1 as a system of n first-order partial differential equations (for implicit functions). If α ∧ dα|Mn+1 = 0 and
α|Mn+1 �= 0, the system is completely integrable and regular, and therefore defines a codimension one foliation F on Mn+1.
The leaves of F are Legendrian submanifolds of S2n+1 corresponding to the solutions.

In this article we construct an embedding of S3 into the standard S5 so that the image has the Reeb foliation F by
Legendrian submanifolds. This example shows that even a non-taut foliation can be a family of Legendrian submanifolds of
J 1(Rn,R). Moreover we prove
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Fig. 1. The curve Ct on � and its parametrization by s.

Theorem 1.1. There exists a smooth family {M3
t }t∈[0,3/2) of codimension-2 submanifolds of S5 such that

(1) M3
0 is the standard S3(⊂ C

2 ⊂ C
3),

(2) M3
t is an embedded contact submanifold for 0 � t < 1,

(3) M3
1 admits a Reeb foliation by injectively immersed Legendrian submanifolds of S5 , and

(4) −M3
t is an embedded overtwisted contact submanifold for 1 < t < 3/2.

The foliated submanifold M3
1 is obtained by joining two great circles {r1 = 1}, {r2 = 1} ⊂ S5 through the Legendrian torus

T = {r1 = r2 = r3 = 1/
√

3, θ1 + θ2 + θ3 = 0}. The family M3
t is obtained as a byproduct in the process of isotoping M1 ⊂ S5

to the unknot. The author is seeking the converse approach, i.e., to find a foliated submanifold by using contact topology or
open-books (see Remark 1 in Section 2).

2. Proof and remark

Proof. Let π be the natural projection of S5 to the 2-simplex � = {(r2
1, r2

2, r2
3) | r2

1 + r2
2 + r2

3 = 1} ⊂ R
3, which sends the

Legendrian 2-torus T = {r1 = r2 = r3 = 1/
√

3, θ1 + θ2 + θ3 = 0} ⊂ S5 to the barycenter G . The set Γ = π−1(∂�) contains
the great circles π−1({V 1, V 2, V 3}) where V i denotes the vertex r2

i = 1. Except them π |Γ is a T 2-fibration. On the other
hand, π |(S5 \Γ ) is a T 3-fibration. Now we take the coordinates (x, y) on � by putting

−−→
O P = −−→

O G + x
−−−→
G V 1 + y

−−−→
G V 2 for P ∈ �,

i.e.,

3r2
1 = 1 + 2x − y(� 0), 3r2

2 = 1 − x + 2y(� 0), and 3r2
3 = 1 − x − y(� 0).

Let M3
0 be the standard S3 = π−1(V 1 V 2). We deform M3

0 with the help of a certain family of simple curves Ct : x = xt(s),
y = yt(s), −δ � s � δ depicted in Fig. 1 (0 < δ 	 1, 0 � t � 3/2). Note that C1 has a break point G while x1(s) and y1(s)
are smooth on (−δ, δ).

We generate M3
t ⊂ S5 by moving the intersection of the “wall” W s = cl{θ1 + θ2 + θ3 = s} ⊂ S5 with the fiber

π−1(xt(s), yt(s)) for −δ � s � δ. Then we can see that M3
t realizes the join of two large circles π−1(V 2) and π−1(V 1).

Now we give a precise definition of the curve Ct . Put ϕ0(u) = 1
2 (1 + u) for u ∈ [−1,1], and take a smooth function ϕ1(u)

and a smooth odd function s(u) such that

ϕ1(u) = 0 (−1 � u � 0), ϕ′
1(u) > 0 (0 < u � 1), ϕ1(u) = ϕ0(u) (1/2 � u � 1),

s′(u) > 0 (−1 < u < 1), s(1) = δ, s(−1) = −δ, and s(u) is C∞-tangent to ± δ.

The inverse function u(s) of s(u) is defined on [−δ, δ]. It is smooth on (−δ, δ) (u′(±δ) = +∞). We put ϕt(u) = (1−t)ϕ0(u)+
tϕ1(u), and take the curve

Ct : x = xt(s) = ϕt
(
u(s)

)
, y = yt(s) = ϕt

(
u(−s)

)
, −δ � s � δ.

Next we show that M3
t is a smooth submanifold. By moving the 2-torus (M3

t \ Γ ) ∩ W s for −δ < s < δ, we see that
M3

t \ Γ is diffeomorphic to T 2 × (−δ, δ). Moreover M3
t is topologically the join S1 
 S1 ≈ S3. Thus it only remains for us to

examine the smoothness of M3
t along M3

t ∩ Γ . We restrict ourself to the connected component of M3
t ∩ Γ corresponding to

s = +δ and omit the other component. We put

M̃3
t :

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

r2
1 + r2

2 + r2
3 = 1,

3r2
2 = 1 − 1

2
(1 + u) + (1 − t)(1 − u),

3r2
3 = 1 − 1

2
(1 + u) − 1 − t

2
(1 − u) = t

3 − 2t
· 3r2

2,
θ1 + θ2 + θ3 = 1
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where u ∈ [1/2,1] is a parameter to be eliminated. Then {θ1 = const} ⊂ M̃3
t is a smooth disk since it tangents to the real

2-plane {z1 = exp
√−1θ1, z3 = z2 ·

√
t

3−2t exp {√−1(1 − θ1)}} ⊂ C
3 at u = 1. Since the function s(u) smoothly tangents to δ

at u = 1, M3
t is a smooth 3-sphere.

Next we consider the (non-)integrability of the restriction λt = α|M3
t of the standard contact form α = r2

1 dθ1 + r2
2 dθ2 +

r2
3 dθ3|S5. Using (θ1, θ2, s) as coordinates of M3

t \ Γ , we can write

λt = xt(s)dθ1 + yt(s)dθ2 + (
1 − xt(s) − yt(s)

)
ds.

Here the sign of λt ∧ dλt with respect to dθ1 ∧ dθ2 ∧ ds > 0 coincides with that of x′
t(s)yt(s) − xt(s)y′

t(s), and that of
1 − t . More generally, if a submanifold M3(≈ T 2 × R) ⊂ S5 is presented by a simple curve C : x = x(s), y = y(s) on int�,
the negative areal velocity x′(s)y(s) − x(s)y′(s) still presents the non-integrability of α|M3. In the case where t = 1, the
integrability means the vanishing of the areal velocity. That is why the curve C1 is broken into two rays to/from the
origin G , and M3

1 is non-analytic.

On the other hand, for cylindrical coordinates (θ1, (r2, θ2)), μt = α|M̃3
t and μt ∧ dμt are written as

μt =
(

1 − 3

3 − 2t
r2

2

)
dθ1 + 3(1 − t)

3 − 2t
r2

2 dθ2 and μt ∧ dμt = 6(1 − t)

3 − 2t
dθ1 ∧ (r2 dr2 ∧ dθ2).

This implies that the sign of λt ∧ dλt everywhere coincides with that of 1 − t .
Now we show that the foliation of M3

1 is a Reeb foliation. The definition of M3
1 is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
3r2

1 = 1 + 2ϕ1
(
u(s)

) − ϕ1
(
u(−s)

)
,

3r2
2 = 1 − ϕ1

(
u(s)

) + 2ϕ1
(
u(−s)

)
,

3r2
3 = 1 − ϕ1

(
u(s)

) − ϕ1
(
u(−s)

)
,

θ1 + θ2 + θ3 = s

where s ∈ [−δ, δ] is a parameter to be eliminated. On the open solid torus H = {s > 0} ⊂ M3
1, we have

α|H = ϕ1
(
u(s)

)
dθ1 + {

1 − ϕ1
(
u(s)

)}
ds.

Thus the surface of θ2-revolution of the graph of θ1 = ∫ ϕ1(u(s))−1
ϕ1(u(s)) ds is a leaf. Similarly, we can describe the foliation on

{s < 0}. These foliations spiral into T and form a transversely oriented Reeb foliation, to which the positive Hopf link
{r1 = 1} ∪ {r2 = 1} is positively transverse.

Finally we see from d(θ1 + θ2)∧ dλt = {x′
t(s)− y′

t(s)}dθ1 ∧ dθ2 ∧ ds > 0 (t �= 1) that the positive Hopf band ker(dθ1 + dθ2)

is a supporting open-book for 0 � t < 1. On the other hand, the negative Hopf band ker(−dθ1 − dθ2) on −Mt(≈ S3) is
a supporting open-book for 1 < t < 3/2. Thus −M3

t is overtwisted. Indeed it has the half-Lutz tube {xt(s) � 0}. Moreover,
since we can reverse the orientation of S3 by a diffeotopy, we obtain the following “negative stabilization” lemma. This ends
the proof.

Lemma 2.1. The overtwisted contact submanifold −M3
5/4 ⊂ S5 is diffeotopic to the standard S3 ⊂ S5 . Particularly −M3

5/4 is differential
topologically unknotted, but contact topologically knotted.

Remark 1. Any closed oriented 3-manifold admits an open-book decomposition (Alexander [1]). We can associate to it a
contact structure (Thurston and Winkelnkemper [8]) as well as a spinnable foliation (see [5]). Further any contact structure
is supported by an open-book decomposition (Giroux [3]). Using this result, the author constructed a certain immersion
of any contact 3-manifold into J 1(R2,R) or S5 [6]. This construction was generalized to any dimension, i.e., M2n+1 →
J 1(R2n,R) or S4n+1 by Martínez Torres [4]. The author proved that any/some contact structure of M3 can be deformed into
some/any spinnable foliation ([5], see also [2]). He also proved that a certain higher dimensional contact structure can be
deformed into a foliation [7]. It is interesting to generalize the present result to these cases.
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