The Reeb foliation arises as a family of Legendrian submanifolds at the end of a deformation of the standard S^{3} in S^{5}

Le feuilletage de Reeb se réalise comme une famille de sous-variétés legendriennes à l'aboutissement d'une déformation d'une sphère S^{3} canonique dans S^{5}

Atsuhide Mori
Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan

A R T I C L E I N F O

Article history:

Received 10 September 2010
Accepted after revision 3 January 2012
Available online 13 January 2012
Presented by Jean-Pierre Demailly

Abstract

We realize the Reeb foliation of S^{3} as a family of Legendrian submanifolds of the unit $S^{5} \subset \mathbb{C}^{3}$. Moreover, we construct a deformation of the standard contact S^{3} in S^{5}, via a family of contact submanifolds, into this realization.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Nous réalisons le feuilletage de Reeb comme une famille de sous-variétés legendriennes de la sphère unité S^{5} dans \mathbb{C}^{3}. Par ailleurs, nous construisons une déformation de la structure de contact canonique S^{3} dans S^{5} via une famille de sous-variétés de contact, aboutissant au feuilletage ainsi réalisé.
© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The Reeb foliation is a codimension one smooth foliation of the 3 -sphere S^{3} obtained by gluing two Reeb components $S^{1} \times D^{2}$ and $D^{2} \times S^{1}$. Since the one-sided holonomies of the Reeb components along $\{1\} \times \partial D^{2}$ and $\partial D^{2} \times\{1\}$ are trivial, the Reeb foliation is not analytic ("Haefliger's remark").

On the other hand the 1 -jet space $J^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right) \approx \mathbb{R}^{2 n+1}$ for a function of n variables carries the canonical contact structure. It is contactomorphic to the unit sphere $S^{2 n+1} \subset \mathbb{C}^{n+1}$ minus any point. Here $S^{2 n+1}$ has the standard contact form $\alpha=\sum_{i=1}^{n+1} r_{i}^{2} \mathrm{~d} \theta_{i} \mid S^{2 n+1}\left(r_{i}=\left|z_{i}\right|, \theta_{i}=\arg z_{i}\right.$ for coordinates z_{i} of $\left.\mathbb{C}^{n+1}\right)$. Thus we may regard a codimension-n submanifold $M^{n+1} \subset S^{2 n+1}$ as a system of n first-order partial differential equations (for implicit functions). If $\alpha \wedge d \alpha \mid M^{n+1}=0$ and $\alpha \mid M^{n+1} \neq 0$, the system is completely integrable and regular, and therefore defines a codimension one foliation \mathcal{F} on M^{n+1}. The leaves of \mathcal{F} are Legendrian submanifolds of $S^{2 n+1}$ corresponding to the solutions.

In this article we construct an embedding of S^{3} into the standard S^{5} so that the image has the Reeb foliation \mathcal{F} by Legendrian submanifolds. This example shows that even a non-taut foliation can be a family of Legendrian submanifolds of $J^{1}\left(\mathbb{R}^{n}, \mathbb{R}\right)$. Moreover we prove

[^0]

Fig. 1. The curve C_{t} on Δ and its parametrization by s.

Theorem 1.1. There exists a smooth family $\left\{M_{t}^{3}\right\}_{t \in[0,3 / 2)}$ of codimension- 2 submanifolds of S^{5} such that
(1) M_{0}^{3} is the standard $S^{3}\left(\subset \mathbb{C}^{2} \subset \mathbb{C}^{3}\right)$,
(2) M_{t}^{3} is an embedded contact submanifold for $0 \leqslant t<1$,
(3) M_{1}^{3} admits a Reeb foliation by injectively immersed Legendrian submanifolds of S^{5}, and
(4) $-M_{t}^{3}$ is an embedded overtwisted contact submanifold for $1<t<3 / 2$.

The foliated submanifold M_{1}^{3} is obtained by joining two great circles $\left\{r_{1}=1\right\},\left\{r_{2}=1\right\} \subset S^{5}$ through the Legendrian torus $T=\left\{r_{1}=r_{2}=r_{3}=1 / \sqrt{3}, \theta_{1}+\theta_{2}+\theta_{3}=0\right\}$. The family M_{t}^{3} is obtained as a byproduct in the process of isotoping $M_{1} \subset S^{5}$ to the unknot. The author is seeking the converse approach, i.e., to find a foliated submanifold by using contact topology or open-books (see Remark 1 in Section 2).

2. Proof and remark

Proof. Let π be the natural projection of S^{5} to the 2-simplex $\Delta=\left\{\left(r_{1}^{2}, r_{2}^{2}, r_{3}^{2}\right) \mid r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1\right\} \subset \mathbb{R}^{3}$, which sends the Legendrian 2-torus $T=\left\{r_{1}=r_{2}=r_{3}=1 / \sqrt{3}, \theta_{1}+\theta_{2}+\theta_{3}=0\right\} \subset S^{5}$ to the barycenter G. The set $\Gamma=\pi^{-1}(\partial \Delta)$ contains the great circles $\pi^{-1}\left(\left\{V_{1}, V_{2}, V_{3}\right\}\right)$ where V_{i} denotes the vertex $r_{i}^{2}=1$. Except them $\pi \mid \Gamma$ is a T^{2}-fibration. On the other hand, $\pi \mid\left(S^{5} \backslash \Gamma\right)$ is a T^{3}-fibration. Now we take the coordinates (x, y) on Δ by putting $\overrightarrow{O P}=\overrightarrow{O G}+x \overrightarrow{G V_{1}}+y \overrightarrow{G V_{2}}$ for $P \in \Delta$, i.e.,

$$
3 r_{1}^{2}=1+2 x-y(\geqslant 0), \quad 3 r_{2}^{2}=1-x+2 y(\geqslant 0), \quad \text { and } \quad 3 r_{3}^{2}=1-x-y(\geqslant 0)
$$

Let M_{0}^{3} be the standard $S^{3}=\pi^{-1}\left(\overline{V_{1} V_{2}}\right)$. We deform M_{0}^{3} with the help of a certain family of simple curves $C_{t}: x=x_{t}(s)$, $y=y_{t}(s),-\delta \leqslant s \leqslant \delta$ depicted in Fig. $1(0<\delta \ll 1,0 \leqslant t \leqslant 3 / 2)$. Note that C_{1} has a break point G while $x_{1}(s)$ and $y_{1}(s)$ are smooth on $(-\delta, \delta)$.

We generate $M_{t}^{3} \subset S^{5}$ by moving the intersection of the "wall" $W_{s}=\operatorname{cl}\left\{\theta_{1}+\theta_{2}+\theta_{3}=s\right\} \subset S^{5}$ with the fiber $\pi^{-1}\left(x_{t}(s), y_{t}(s)\right)$ for $-\delta \leqslant s \leqslant \delta$. Then we can see that M_{t}^{3} realizes the join of two large circles $\pi^{-1}\left(V_{2}\right)$ and $\pi^{-1}\left(V_{1}\right)$. Now we give a precise definition of the curve C_{t}. Put $\varphi_{0}(u)=\frac{1}{2}(1+u)$ for $u \in[-1,1]$, and take a smooth function $\varphi_{1}(u)$ and a smooth odd function $s(u)$ such that

$$
\begin{aligned}
& \varphi_{1}(u)=0 \quad(-1 \leqslant u \leqslant 0), \quad \varphi_{1}^{\prime}(u)>0 \quad(0<u \leqslant 1), \quad \varphi_{1}(u)=\varphi_{0}(u) \quad(1 / 2 \leqslant u \leqslant 1), \\
& s^{\prime}(u)>0 \quad(-1<u<1), \quad s(1)=\delta, \quad s(-1)=-\delta, \quad \text { and } \quad s(u) \text { is } C^{\infty} \text {-tangent to } \pm \delta .
\end{aligned}
$$

The inverse function $u(s)$ of $s(u)$ is defined on $[-\delta, \delta]$. It is smooth on $(-\delta, \delta)\left(u^{\prime}(\pm \delta)=+\infty\right)$. We put $\varphi_{t}(u)=(1-t) \varphi_{0}(u)+$ $t \varphi_{1}(u)$, and take the curve

$$
C_{t}: \quad x=x_{t}(s)=\varphi_{t}(u(s)), \quad y=y_{t}(s)=\varphi_{t}(u(-s)), \quad-\delta \leqslant s \leqslant \delta .
$$

Next we show that M_{t}^{3} is a smooth submanifold. By moving the 2-torus $\left(M_{t}^{3} \backslash \Gamma\right) \cap W_{s}$ for $-\delta<s<\delta$, we see that $M_{t}^{3} \backslash \Gamma$ is diffeomorphic to $T^{2} \times(-\delta, \delta)$. Moreover M_{t}^{3} is topologically the join $S^{1} \star S^{1} \approx S^{3}$. Thus it only remains for us to examine the smoothness of M_{t}^{3} along $M_{t}^{3} \cap \Gamma$. We restrict ourself to the connected component of $M_{t}^{3} \cap \Gamma$ corresponding to $s=+\delta$ and omit the other component. We put

$$
\widetilde{M_{t}^{3}}:\left\{\begin{array}{l}
r_{1}^{2}+r_{2}^{2}+r_{3}^{2}=1 \\
3 r_{2}^{2}=1-\frac{1}{2}(1+u)+(1-t)(1-u) \\
3 r_{3}^{2}=1-\frac{1}{2}(1+u)-\frac{1-t}{2}(1-u)=\frac{t}{3-2 t} \cdot 3 r_{2}^{2} \\
\theta_{1}+\theta_{2}+\theta_{3}=1
\end{array}\right.
$$

where $u \in[1 / 2,1]$ is a parameter to be eliminated. Then $\left\{\theta_{1}=\right.$ const $\} \subset \widetilde{M_{t}^{3}}$ is a smooth disk since it tangents to the real 2-plane $\left\{z_{1}=\exp \sqrt{-1} \theta_{1}, z_{3}=\overline{z_{2}} \cdot \sqrt{\frac{t}{3-2 t}} \exp \left\{\sqrt{-1}\left(1-\theta_{1}\right)\right\}\right\} \subset \mathbb{C}^{3}$ at $u=1$. Since the function $s(u)$ smoothly tangents to δ at $u=1, M_{t}^{3}$ is a smooth 3 -sphere.

Next we consider the (non-)integrability of the restriction $\lambda_{t}=\alpha \mid M_{t}^{3}$ of the standard contact form $\alpha=r_{1}^{2} \mathrm{~d} \theta_{1}+r_{2}^{2} \mathrm{~d} \theta_{2}+$ $r_{3}^{2} \mathrm{~d} \theta_{3} \mid S^{5}$. Using $\left(\theta_{1}, \theta_{2}, s\right)$ as coordinates of $M_{t}^{3} \backslash \Gamma$, we can write

$$
\lambda_{t}=x_{t}(s) \mathrm{d} \theta_{1}+y_{t}(s) \mathrm{d} \theta_{2}+\left(1-x_{t}(s)-y_{t}(s)\right) \mathrm{d} s
$$

Here the sign of $\lambda_{t} \wedge d \lambda_{t}$ with respect to $\mathrm{d} \theta_{1} \wedge \mathrm{~d} \theta_{2} \wedge \mathrm{~d} s>0$ coincides with that of $x_{t}^{\prime}(s) y_{t}(s)-x_{t}(s) y_{t}^{\prime}(s)$, and that of $1-t$. More generally, if a submanifold $M^{3}\left(\approx T^{2} \times \mathbb{R}\right) \subset S^{5}$ is presented by a simple curve $C: x=x(s), y=y(s)$ on int Δ, the negative areal velocity $x^{\prime}(s) y(s)-x(s) y^{\prime}(s)$ still presents the non-integrability of $\alpha \mid M^{3}$. In the case where $t=1$, the integrability means the vanishing of the areal velocity. That is why the curve C_{1} is broken into two rays to/from the origin G, and M_{1}^{3} is non-analytic.

On the other hand, for cylindrical coordinates $\left(\theta_{1},\left(r_{2}, \theta_{2}\right)\right), \mu_{t}=\alpha \mid \widetilde{M_{t}^{3}}$ and $\mu_{t} \wedge \mathrm{~d} \mu_{t}$ are written as

$$
\mu_{t}=\left(1-\frac{3}{3-2 t} r_{2}^{2}\right) \mathrm{d} \theta_{1}+\frac{3(1-t)}{3-2 t} r_{2}^{2} \mathrm{~d} \theta_{2} \quad \text { and } \quad \mu_{t} \wedge \mathrm{~d} \mu_{t}=\frac{6(1-t)}{3-2 t} \mathrm{~d} \theta_{1} \wedge\left(r_{2} \mathrm{~d} r_{2} \wedge \mathrm{~d} \theta_{2}\right)
$$

This implies that the sign of $\lambda_{t} \wedge \mathrm{~d} \lambda_{t}$ everywhere coincides with that of $1-t$.
Now we show that the foliation of M_{1}^{3} is a Reeb foliation. The definition of M_{1}^{3} is

$$
\left\{\begin{array}{l}
3 r_{1}^{2}=1+2 \varphi_{1}(u(s))-\varphi_{1}(u(-s)), \\
3 r_{2}^{2}=1-\varphi_{1}(u(s))+2 \varphi_{1}(u(-s)), \\
3 r_{3}^{2}=1-\varphi_{1}(u(s))-\varphi_{1}(u(-s)), \\
\theta_{1}+\theta_{2}+\theta_{3}=s
\end{array}\right.
$$

where $s \in[-\delta, \delta]$ is a parameter to be eliminated. On the open solid torus $H=\{s>0\} \subset M_{1}^{3}$, we have

$$
\alpha \mid H=\varphi_{1}(u(s)) \mathrm{d} \theta_{1}+\left\{1-\varphi_{1}(u(s))\right\} \mathrm{d} s
$$

Thus the surface of θ_{2}-revolution of the graph of $\theta_{1}=\int \frac{\varphi_{1}(u(s))-1}{\varphi_{1}(u(s))} \mathrm{d} s$ is a leaf. Similarly, we can describe the foliation on $\{s<0\}$. These foliations spiral into T and form a transversely oriented Reeb foliation, to which the positive Hopf link $\left\{r_{1}=1\right\} \cup\left\{r_{2}=1\right\}$ is positively transverse.

Finally we see from $\mathrm{d}\left(\theta_{1}+\theta_{2}\right) \wedge \mathrm{d} \lambda_{t}=\left\{x_{t}^{\prime}(s)-y_{t}^{\prime}(s)\right\} \mathrm{d} \theta_{1} \wedge \mathrm{~d} \theta_{2} \wedge \mathrm{~d} s>0(t \neq 1)$ that the positive Hopf band $\operatorname{ker}\left(\mathrm{d} \theta_{1}+\mathrm{d} \theta_{2}\right)$ is a supporting open-book for $0 \leqslant t<1$. On the other hand, the negative Hopf band $\operatorname{ker}\left(-\mathrm{d} \theta_{1}-\mathrm{d} \theta_{2}\right)$ on $-M_{t}\left(\approx S^{3}\right)$ is a supporting open-book for $1<t<3 / 2$. Thus $-M_{t}^{3}$ is overtwisted. Indeed it has the half-Lutz tube $\left\{x_{t}(s) \leqslant 0\right\}$. Moreover, since we can reverse the orientation of S^{3} by a diffeotopy, we obtain the following "negative stabilization" lemma. This ends the proof.

Lemma 2.1. The overtwisted contact submanifold $-M_{5 / 4}^{3} \subset S^{5}$ is diffeotopic to the standard $S^{3} \subset S^{5}$. Particularly $-M_{5 / 4}^{3}$ is differential topologically unknotted, but contact topologically knotted.

Remark 1. Any closed oriented 3-manifold admits an open-book decomposition (Alexander [1]). We can associate to it a contact structure (Thurston and Winkelnkemper [8]) as well as a spinnable foliation (see [5]). Further any contact structure is supported by an open-book decomposition (Giroux [3]). Using this result, the author constructed a certain immersion of any contact 3 -manifold into $J^{1}\left(\mathbb{R}^{2}, \mathbb{R}\right)$ or $S^{5}[6]$. This construction was generalized to any dimension, i.e., $M^{2 n+1} \rightarrow$ $J^{1}\left(\mathbb{R}^{2 n}, \mathbb{R}\right)$ or $S^{4 n+1}$ by Martínez Torres [4]. The author proved that any/some contact structure of M^{3} can be deformed into some/any spinnable foliation ([5], see also [2]). He also proved that a certain higher dimensional contact structure can be deformed into a foliation [7]. It is interesting to generalize the present result to these cases.

Acknowledgements

The author would like to thank the anonymous reviewer(s) for encouragement to include intuitive descriptions and a figure, which have made the article easier to access for general readers.

References

[1] J. Alexander, A lemma on systems of knotted curves, Proc. Nat. Acad. Sci. USA 9 (1923) 93-95.
[2] J. Etnyre, Contact structures on 3-manifolds are deformations of foliations, Int. Math. Res. Notices 14 (2007) 775-779.
[3] E. Giroux, Géometrie de contact de la dimension trois vers les dimensions supérieures, in: Proc. ICM2002, Beijing, vol. II, pp. 405-414.
[4] D. Martínez Torres, Contact embeddings in standard contact spheres via approximately holomorphic geometry, J. Math. Sci. Univ. Tokyo 18 (2011) 139-154.
[5] A. Mori, A note on Thurston-Winkelnkemper's construction of contact forms on 3-manifolds, Osaka J. Math. 39 (2002) 1-11.
[6] A. Mori, Global models of contact forms, J. Math. Sci. Univ. Tokyo 11 (2004) 447-454.
[7] A. Mori, Reeb foliations on S^{5} and contact 5-manifolds violating the Thurston-Bennequin inequality, preprint, 2009, arXiv:0906.3237.
[8] W. Thurston, H. Winkelnkemper, On the existence of contact forms, Proc. AMS 52 (1975) 345-347.

[^0]: E-mail address: ka-mori@ares.eonet.ne.jp.
 1631-073X/\$ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. doi:10.1016/j.crma.2012.01.001

