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We study Euler characteristics of moduli spaces of stable representations of m-Kronecker
quivers for m � 0. In particular, we study an asymptotic log formula of Euler characteristics
and a normalized asymptotic log formula of Euler characteristic, motivated by so-called
Douglas conjecture.
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r é s u m é

Nous étudions la caractéristique d’Euler des espaces de modules de représentations stables
des m-carquois de Kronecker pour m grand. En particulier, nous étudions une formule
log asymptotique pour la caractéristique d’Euler et une formule asymptotique normalisée,
motivées par la conjecture de Douglas.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

For each positive integer m, let K m be the m-Kronecker quiver which consists of two vertices and m arrows from one
to the other. For generic non-trivial stability conditions [1] on the category of representations of K m and moduli spaces of
stable representations M(K m(a,b)) of coprime dimension vectors (a,b) [5], we study Euler characteristics χ(K m(a,b)).

We give some more details in the later section and we go on as follows. Notice that for the Euler form 〈·,·〉 and a
symplectic form {·,·}, which is an anti-symmetrization of the Euler form, we may take a non-trivial stability condition
on the category of representations of K m such that for representations E, F of K m and the slope function μ, we have
μ(E) > μ(F ) if and only if {E, F } > 0.

For objects to study in terms of wall-crossings, stability conditions such that the positivity of the difference of slopes
coincides with that of symplectic forms on the Grothendieck group have been commonly called Denef’s stability conditions
in physics [2]. We employ these special stability conditions and the terminology.

Euler characteristics χ(K m(a,b)) have been studied extensively. In particular, formulas of Kontsevich–Soibelman and
Reineke [6,10,12] have been known. In this article, we would like to study quantitative questions for m � 0.

To analyze further, for each coprime a,b and m > 0, let us define the bipartite quiver Q m(a,b) which consists of a
source vertices and b terminal vertices with m arrows from each source vertex to each terminal vertex. On representations
of Q m(a,b), we have Denef’s stability conditions (see Section 2).
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We denote M(Q m(a,b)) to be the moduli space of stable representations of dimension vectors being one on each vertex
of Q m(a,b) and χ(Q m(a,b)) to be the corresponding Euler characteristic. We have the following:

Theorem 1. For each coprime a,b, and m � 0, we have

χ
(

Q 1(a,b)
) ∼ a!b!

ma+b−1
χ

(
K m(a,b)

)
.

We would like to mention that in Theorem 1, Euler characteristics in the left-hand and right-hand sides are discussed in
terms of blackhole counting in supergravity [7] and Witten index in superstring theory [3] (see also [15]).

Key tools to obtain Theorem 1 are the recently obtained formula in Theorem 3 on χ(K m(a,b)) by Manschot, Pioline
and Sen [7] (MPS formula for short, see also [8,9,14])1 and our Lemma 2.1. We realize that by taking m to be a variable,
MPS formula provides the polynomial expansion of χ(K m(a,b)) whose coefficients involve Euler characteristics of bipartite
quivers such as Q 1(a,b). Indeed, we are dealing with nothing but the first-order approximation of χ(K m(a,b)) for m � 0.

By Theorem 1, to compute χ(Q 1(a,b)), we can take the advantage of χ(K m(a,b)). Since the explicit formula of
χ(K m(a,a + 1)) has been provided in [16], we can obtain χ(Q 1(a,a + 1)) as in Corollary 5. Let us mention that for the
cases of a = 1 and arbitrary b, we see that Stirling formula explains Theorem 1.

Douglas has conjectured the following [4,11,16]. For coprime a,b � 0 such that b
a ∼ r and each m, we have

that ln(χ(K m(a,b)))
a is a continuous function of r. In particular, the conjecture gives an asymptotic closed formula of

ln(χ(K m(a,b))). Allowing m to be large, we have the following:

Corollary 2. For each coprime a,b and m � 0, we have

ln
(
χ

(
K m(a,b)

)) ∼ (a + b − 1) ln(m).

In particular, for a,b � 0 such that b
a ∼ r and large enough m depending on a,b, we have

ln(χ(K m(a,b)))

a
∼ (1 + r) ln(m).

2. Proofs

Let us expand and introduce notions. For each a, let a denote a partition of a such that for non-negative integers al of
l � 1, we have

∑
l lal = a. We put Sa = ∑

al for our convenience. When a1 = a, we simply write a for a. For a quiver Q
and representations E, F of Q , on the Grothendieck group of the category of representations of Q , let 〈E, F 〉Q be the Euler
form and {E, F }Q be the symplectic form 〈F , E〉Q − 〈E, F 〉Q . For a dimension vector d, we call a partition d1, . . . ,ds of d

such that
∑s

p=1 dp = d and {∑b
p=1 dp,d}Q > 0 for each b = 1, . . . , s − 1 to be admissible.

For each m > 0 and partitions a,b of a and b, we define the bipartite quiver Q m(a,b) as follows. It consists of Sa source
vertices such that for each l, we have al vertices v; for our convenience, we say al is the label of v and we put w(v) = l. It
consists of Sb terminal vertices with labels and w(·) being defined by the same manner. We put mw(v)w(v ′) arrows from
each source vertex v to each terminal vertex v ′ .

Let us explain Denef’s stability conditions in use. For the m-Kronecker quiver K m , the source vertex (1,0), and the
terminal vertex (0,1), the slope function μ satisfies μ(1,0) > μ(0,1). For Q m(a,b) and vertices v and v ′ with the labels
being al and bl′ , central charges Z(v)

w(v)
and Z(v ′)

w(v ′) coincide with those of the vertices (1,0) and (0,1).

We write (a,b) for the dimension vector which has one on each vertex of the quiver Q m(a,b). We let M(Q m(a,b)) to
be the moduli space of stable representations of the dimension vector (a,b) of Q m(a,b). We denote P (Q m(a,b), y) to be
the Poincaré polynomial and we put χ(Q m(a,b)) = P (Q m(a,b),1). For the m-Kronecker quiver K m , we have the following
MPS formula by specializing the Poincaré polynomial formula in [7, Appendix D]:

Theorem 3 (MPS formula). For each coprime a,b and m > 0, we have

χ
(

K m(a,b)
) =

∑
a,b

χ
(

Q m(a,b)
) ·

∏
l

1

al!
(−1)al(l−1)

l2al
·
∏

l

1

bl!
(−1)bl(l−1)

l2bl
.

Notice that M(Q m(a,b)) is a non-trivial smooth projective variety, since we have stable representations including ones
with invertible maps on every arrow. We have the following:

1 In [7], they give their formula in terms of Poincaré polynomials for Denef’s stabilities on quivers without oriented loops. We use its Euler characteristic
version on Kronecker quivers. In [13], their formula has been motivically generalized and, for complete bipartite quivers and Euler characteristics, identified
with a degeneration formula of Gromow–Witten theory.
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Lemma 2.1.

χ
(

Q m(a,b)
) = mSa+Sb−1χ

(
Q 1(a,b)

)
.

Proof. We consider the Poincaré polynomial P (Q m(a,b), y) with Reineke’s formula [10, Corollary 6.8]. For the dimen-

sion vector (a,b), we take an admissible partition d1, . . . ,ds and (−1)s−1 y2
∑

k�l
∑

v→v′ dl
v dk

v′ . We notice that {·,·}Q m(a,b)
=

m{·,·}Q 1(a,b)
. The set of admissible partitions is invariant under choices of m. For each admissible partition, the power of y

above is the m times of that for P (Q 1(a,b), y). We have that P (Q 1(a,b), y) is a non-zero polynomial. Ignoring an overall
factor of a power of y and writing y2 as q for simplicity, for some non-trivial and non-negative integers αi and βi , we have
P (Q 1(a,b),q) = (q − 1)1−Sa−Sb (

∑
i�0 αi(q − 1)Sa+Sb−1qβi ). For admissible partitions, the second factor is the sum of terms

above. So we have P (Q m(a,b),q) = (q − 1)1−Sa−Sb (
∑

i�0 αi(qm − 1)Sa+Sb−1qmβi ). �
We give a proof of Theorem 1.

Proof. By Lemma 2.1, χ(Q m(a,b)) carries the highest power of m among χ(Q m(a,b)) in Theorem 3. �
We give a proof of Corollary 2.

Proof. When a + b = 1, M(K m(a,b)) is a point. For a + b �= 1 and large enough m so that

∣∣∣∣ ln(
χ(Q 1(a,b))

a!b! )

(a + b − 1) ln(m)

∣∣∣∣ 	 1,

the first assertion follows. For the second assertion, with ai,bi,mi such that bi
ai

→ r, 1
ai

→ 0, and ln(χ(K mi (ai ,bi)))
ln(mi)(ai+bi−1)

→ 1 for
i → ∞, we use a standard argument. �

Let us compute χ(Q 1(a,a + 1)) as in the introduction. From [16], we recall the following:

Theorem 4. (See [16, Theorem 6.6].)

χ
(

K m(a,a + 1)
) = m

(a + 1)((m − 1)a + m)

(
(m − 1)2a + (m − 1)m

a

)
.

By Theorem 1, we have the following:

Corollary 5.

χ
(

Q 1(a,a + 1)
) = lim

m→∞
χ(K m(a,a + 1))a!(a + 1)!

m2a
= (a + 1)!(a + 1)−2+a.

Remark 1. With the formula of χ(K m(2,2a + 1)) in [10], Manschot has proved

χ
(

Q 1(2,2a + 1)
) = (2a + 1)!

a!2 .

This sequence and the one in Corollary 5 coincide with A002457 and A066319 at oeis.org.
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