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Given a Stein manifold XC which is homogeneous under a complex reductive Lie group
GC , i.e., a complexification GC/KC of a compact homogeneous space G/K . Consider a
relatively compact domain D which is invariant w.r.t. the compact real form G of the
complex reductive Lie group in the Stein manifold XC . We find a relation between the
automorphism group of the invariant domain D and isometric group of the compact
homogeneous space G/K . When the compact homogeneous space G/K is isotropy
irreducible, or even more general, we obtain a rigidity property of the automorphism
groups.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit XC une variété de Stein qui est homogène sous un groupe de Lie réductif complexe
GC , cést-à-dire, la complexification GC/KC d’un espace homogène compact G/K . Soit D
un domaine relativement compact qui est invariant par rapport à la forme compacte G
de groupe de Lie réductif complexe dans XC . On trouve une relation entre le groupe
d’automorphismes du domaine invariant D et le groupe d’isométrie de l’espace homogène
compact G/K . Si l’espace homogène compact G/K est isotropie irréductible, on obtient une
propriété de rigidité du groupe d’automorphismes.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

It is well-known in complex analysis (see [24]) that for an annulus in the complex plane, its automorphism group is
just T � Z2, where T is the circle group. In several complex variables, the analogue of the annulus is the relatively compact
Reinhardt domain in (C∗)n . It is also well-known that for a Reinhardt domain D ⊂⊂ (C∗)n , the identity component Aut(D)0

of the automorphism group Aut(D) of D is exactly T n , the n-dimensional torus (n-times product T × · · · × T of T ). This
result was established in 1980’s in several papers, see [2,4,16,25].

In the setting of the group actions, the annulus is a relatively compact T -invariant domain in C
∗ , the punctured complex

plane with the usual multiplication as the group structure, which is the complexification of the group T ; while the above
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Reinhardt domain is a relatively compact T n-invariant domain in (C∗)n , which is the complexification of T n . The action here
is the natural action of T n on (C∗)n given by coordinate-wise multiplication.

Let G be a connected compact Lie group and K be a closed subgroup of G , then X = G/K is a compact homogeneous
space and XC = GC/KC is a complexification of X , where GC , KC are the universal complexifications of G , K . It is known
that XC is a Stein manifold and there is a natural holomorphic action of GC on XC given by the left translations. Let
D ⊂ XC be a G-invariant domain, in the present Note, we will consider the holomorphic automorphism group Aut(D) of D .
Throughout this paper, a domain means a connected open set. In [30], Zhou proved the following compactness property of
the automorphism group for the relatively compact invariant domain D in GC/KC:

Theorem 1.1. (See [30].) Let G be a connected compact Lie group, K a closed subgroup of G, D ⊂⊂ GC/KC a G-invariant domain,
then Aut(D) is compact.

The above result was earlier proved by G. Fels and L. Geatti under more restrictive assumption that (G, K ) is a Rieman-
nian symmetric pair [10]. It is easy to see that the automorphism group Aut(D) of D obviously contains G , if the action
is effective. A natural question is when there are not additional positive dimensional symmetries, i.e., when Aut(D)/G is
discrete. The main results in the present Note are motivated by the question and the known results about the rigidity of
automorphism groups for Reinhardt domains. We deal with the question from the point of view of group actions [31]. Use-
ful references are [8], [3], [20], [21], etc. In the present paper, we shall give a relation between the automorphism group of
the invariant domains D and isometric group of the compact homogeneous space G/K . When the compact homogeneous
space G/K is isotropy irreducible (except a couple of cases), or even more general, we obtain that the identity component
Aut(D)0 of Aut(D) is just G .

2. Rigidity of automorphism groups of relatively compact invariant domains

Now let G be a general connected compact Lie group and K a closed subgroup of G , let X = G/K and XC = GC/KC .
For a G-invariant domain D in XC , one has a homomorphism of G to Aut(D), we denote by Ğ the image of G in Aut(D),
in general, Ğ can be identified with a quotient group of G . If the action is effective, Ğ is isomorphic to G . Without loss of
generality, we assume that the action is effective later on. We have the following results:

Theorem 2.1. Let G, K , D be as above. Let D be relatively compact and orbit connected. Then the identity component Aut(D)0 of
Aut(D) can be realized as a closed subgroup of Iso(X, g), where g is some G-invariant Riemannian metric on X.

Proof. By the main Theorem 2.6 of Zhou in [29], the envelope of holomorphy E(D) of D is schlicht, i.e., E(D) ⊂ XC . It is
clear that E(D) is also relatively compact in XC . Since G ⊂ Aut(D) ⊂ Aut(E(D)), one may assume that D is Stein without
loss of generality. Therefore D is orbit convex (see [29]). By a theorem of Zhou in [30] (p. 1109), D contains a minimal orbit,
and Aut(E(D)) fixes the minimal orbit X and is compact. So one may find an Aut(E(D))-invariant Riemannian metric g on
X which is certainly G-invariant, and hence there is a homomorphism Aut(E(D)) → Iso(X, g). Since X is maximal totally
real in D , using the identity theorem, one has Aut(E(D)) ⊂ Iso(X, g). �
Remark 2.1. As a consequence, one can get an immediate proof of the result on Reinhardt domains mentioned in the
introduction, since the identity component of the isometric group of T n with any T n-invariant Riemannian metric is just T n .

Remark 2.2. Any G-invariant domain in XC = GC/KC is automatically orbit connected, if either (G, K ) is a symmetric pair
[17,1], or K is connected [7] (for the case when K is trivial), [29].

As a corollary, when (G, K ) is a Riemannian symmetric pair, then Aut(D)0 = G . The corollary is a generalization of the
main result Theorem 0.1 in [10], the method used here is different from theirs.

With the above theorem, we may actually generalize the above corollary to the more general case when G/K is an
isotropy irreducible space.

Definition 2.1. The space X = G/K is called isotropy irreducible (or strongly isotropy irreducible) if the isotropy representa-
tion of Gx (or G0

x ) at each point x ∈ X is irreducible, where Gx is the isotropy subgroup of G at x whose identity component
is G0

x .

An irreducible symmetric space is a special case of isotropy irreducible spaces. The G-invariant Riemannian metric on
the isotropy irreducible space G/K is unique up to a constant factor.

Theorem 2.2. Let X = G/K be a strongly isotropy irreducible space, where G is a connected compact Lie group and K is a closed
subgroup of G. Let D ⊂⊂ GC/KC be a G-invariant domain. Assume that both exceptional groups G2 and Spin(7) are not the universal
covering groups of G. Then Aut(D)0 = G.



F.S. Deng, X.Y. Zhou / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 417–420 419
Proof. One may assume that G is simply connected, since one may take the universal covering group if necessary. It is
known that there is a subgroup K ′ of K consisting of some connected components of K such that there is a G-equivariant
embedding l : D → GC/K ′

C
such that l(D) is orbit connected and eK ′

C
∈ l(D) (cf. [14]). Since G/K ′ is still strongly isotropy

irreducible, replacing D by l(D), we may assume that D is orbit connected. By the above Theorem 2.1, one has G ⊂ Aut(D) ⊂
Iso(X, g). Consider the natural projection π : X̃ = G/K 0 → X = G/K , where K 0 is the identity component of K . Since X̃ is
still strongly isotropy irreducible, Iso( X̃, g̃)0 = G [28,27]. Therefore, by the following lemma [9], Aut(D)0 = G . �
Lemma 2.3. Let M be a complex manifold such that its fundamental group π1(M) is finitely generated. Let p : M̃ → M be a holo-
morphic covering of finite degree. Then the identity component Aut(M)0 of the holomorphic automorphism group of M is naturally
isomorphic to a quotient group of some closed subgroup of Aut(M̃); in particular, dim Aut(M) � dim Aut(M̃) if dim Aut(M̃) is finite.

Theorem 2.4. Let X = G/K be an isotropy irreducible homogeneous space which is not strongly isotropy irreducible, where G is a
connected compact Lie group, K is a closed subgroup with dim K > 0. Let D ⊂⊂ GC/KC be a G-invariant domain. Then Aut(D)0 = G.

For the special cases G/K = G2/SU(3) = S6 and G/K = Spin(7)/G2 = S7 in Theorem 2.2 which can be also written as
SO(7)/SO(6) and SO(8)/SO(7) respectively; in the case of S6, if D is G2-invariant but not SO(7)-invariant, then Aut(D)0 = G2;
if D is not only G2-invariant but also SO(7)-invariant, then Aut(D)0 = SO(7); for D in the case of S7, one has similar
consequence. The exceptional case when dim K = 0 in Theorem 2.4 can be reduced to the corollary following Theorem 2.1.

3. Rigidity of automorphism groups of hyperbolic invariant domains

For a hyperbolic (in the sense of Kobayashi) Reinhardt domain D in (C∗)n , it is shown that the identity component of
Aut(D) is just the n-dimensional torus T n [16]. It is also natural to consider the similar rigidity property for the identity
component of the automorphism groups of hyperbolic invariant domains in XC = GC/KC . In the present Note, we establish
the following results for hyperbolic invariant domains in complexifications of isotropy irreducible spaces:

Theorem 3.1. Let X = G/K be a strongly isotropy irreducible space, where G is a connected compact Lie group and K is a closed
subgroup of G. Let D ⊂ GC/KC be a hyperbolic G-invariant domain. Assume that both G2 and Spin(7) are not the universal covering
group of G. Then Aut(D)0 = G.

Proof. Using the same argument as in the proof of Theorem 2.2 and by Lemma 2.3, we may further assume that K is
connected and X is simply connected.

Let g = Lie(G) and k = Lie(K ). The adjoint representation of G on g induces a representation of K on g. Take a K -
submodule p of g such that g = k ⊕ p, then the representation of K on p is irreducible since G/K is a strongly isotropy
irreducible space. One can naturally identify p with Tx0 (G/K ) and pC = p ⊕ ip with Tx0 D , where x0 = e.KC . Let O =
Aut(D)0x0 be the orbit of Aut(D)0 containing the point x0, we want to prove that O = G/K . If it is not the case, then one
has dim O > dim G/K . Then Tx0 O is a real K -submodule of pC which contains p strictly, hence Tx0 O = pC since the action
of K on p is irreducible. This implies dim O = dim D , i.e., O is an open orbit in D . On the other hand, Aut(D) acts properly
on D as a Lie transformation group since D is hyperbolic (cf. [15]), so the orbit O is also closed in D . Hence O = D since
D is connected and so D is homogeneous. This implies that D is biholomorphic to a homogeneous bounded domain (cf.
[22]), and hence is Stein and contractible (cf. [26]). Since K is connected, the Steinness of D implies orbit convexity of D
(cf. [29]), hence it is homotopic to X . We get a contradiction since X is not contractible.

Note that O = G/K is a totally real submanifold of D of maximal dimension, so any element in Aut(D)0 is uniquely
determined by its operation on G/K . Since Aut(D)0 acts on D properly and X is compact, we see Aut(D)0 is compact. Hence
there is an Aut(D)0-invariant Riemannian metric g on G/K which makes G/K a Riemannian strongly isotropy irreducible
space. So in this case, the theorem holds again by the results in [28] on isometry groups of simply connected strongly
isotropy irreducible spaces. �
Theorem 3.2. Let X = G/K be an isotropy irreducible homogeneous space which is not strongly isotropy irreducible, where G is
a connected compact Lie group, K is a closed subgroup with dim K > 0. Let D ⊂ GC/KC be a Stein G-invariant domain which is
hyperbolic in the sense of Kobayashi. Then Aut(D)0 = G.

The proof of the theorem will be given elsewhere [9]. The special cases G2, Spin(7) in Theorem 3.1 and dim K = 0 in
Theorem 3.2 can be treated like in the last paragraph of the last section.

4. Further remarks

The above results about the case of isotropy irreducible homogeneous spaces could be extended to a more general case
of the so-called “asystatic” transitive actions. The isometric groups of the asystatic spaces have also rigidity property except
few cases (see [12]).
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There is a relation between our result and the well-known result on the rigidity of Grauert tubes of a Riemannian
symmetric space of compact type. When M = G/K , it is known that there is a G-equivariant biholomorphism between T M
and GC/KC , and Aut(T r M)0 = G , see [23,5,6,13,18], etc. In this case, the connectedness of the full automorphism groups is
equivalent to the rigidity of the Grauert tube. As for the connectedness of the full automorphism groups in our case, we
may prove that when D is relatively compact and strictly pseudoconvex domain with smooth boundary (or more general
pseudoconvex domains satisfying condition R) in XC = GC/KC with dimension � 2, then Aut(D) is connected. Therefore,
Aut(D) is just G when X is isotropy irreducible. The proof of the result will be given elsewhere.

In the proof of the Theorem 3.2 we need the assumption of the Steinness of the domain. The envelope of holomorphy of
a hyperbolic manifold may not be hyperbolic again in general even for invariant domains. For example, there is a hyperbolic
tube domain in C

2 whose envelope of holomorphy is the whole C
2 [19]; recently a family of hyperbolic SU(1,1)-invariant

domains in SL(2,C)/U (1)C whose envelopes of holomorphy are not hyperbolic was also constructed [11]. These domains
are invariant w.r.t. to noncompact groups actions. Even for compact group action, there exits a hyperbolic Reinhardt domain
in (C∗)2 whose envelope of holomorphy is not hyperbolic [9].
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