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One-dimensionally indexed bilinear (BL) models are widely used for modeling non-
Gaussian dataset. Extending BL models to multidimensionally indexed (spatial) (SBL) one
yields a novel class of models which are capable of taking into account the non-Gaussianity
character and spatiality behavior. Hence, the main contribution here is to study the L2-
structure of some SBL models which play an important role in spatial statistical analysis.
So, we establish necessary and sufficient conditions for the existence of regular second
order stationary and ergodic solutions in terms of its transfer functions. As a consequence,
we observe that the second order structure is similar to a weak ARMA field, and that the
variance of the best linear prediction error is always greater than the one obtained from
an SBL model.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Les modèles bilinéaires (BL) classiques sont largement utilisés pour la modélisation des
données non gaussiennes. Cependant, l’extension de ces modèles au cas spatial (SBL) donne
une nouvelle classe de modèles susceptibles de prendre en considération la non gaussianité
et le comportement spatial. Le but principal de cette Note consiste à étudier la structure
L2 de certains modèles SBL qui jouent un rôle très important dans l’analyse statistique
spatiale. Nous établissons des conditions nécessaires et suffisantes pour l’existence de
solutions stationnaires aux seconds ordres, réguliers et ergodiques basées sur les fonctions
de transferts. En utilisant la représentation ARMA spatiale, on montre que la variance de
l’erreur de prédiction linéaire est toujours plus grande que celle obtenue par SBL.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Dans la présente Note, nous étudions la structure L2 des champs aléatoires non linéaires générés par l’équation ré-
cursive (3). Après avoir présenté les principaux résultats de la généralisation au cas n − D , nous donnons des conditions
nécessaires et suffisantes (CNS) d’existence de solution unique, causale et stationnaire basées sur les fonctions de transferts
associées. Nous dérivons également des CNS pour d’autre modèles en particulier pour les processus GARCH sur Z

d . Nous
terminons notre étude par une représentation ARMA sur Z

d du modèle (3) et nous concluons que la variance de l’erreur de
prédiction linéaire est toujours plus grande que celle obtenue par (3).
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1. Introduction

The d-dimensionally indexed processes (X(t))t∈Zd where Z
d denotes the d-dimensional integer lattice arises naturally in

modeling some spatial dataset. These processes are often assumed to be linear and may be Gaussian (see for instance [4]
and the references therein). Recent studies have shown that such an assumption is very unrealistic. Hence, by extending
some one-dimensionally indexed nonlinear models to multidimensionally indexed one, yields a novel random fields which
are capable to taking into account the nonlinearity and spatiality dependence. Indeed, Amirmazlaghani and Amindavar [1]
have used two-dimensional GARCH model for wavelet coefficients modeling in order to perform the image denoising, and
to distilling a small number of clustered pixels. Doukhan and Truquet [3] have proposed a general random fields models
with infinite interactions which encompass many commonly used models in the literature. Their contribution is focused on
conditions ensuring the weak dependency with long memory solutions.

In this Note, we examine the L2-structure of bilinear processes (SBL) indexed by Z
d . The study of such processes is

motivated by the theoretical and practical demand of finding necessary and sufficient conditions ensuring the existence of
regular stationary (in L2 sense) and ergodic solutions for SBL models. Under these conditions, the best linear predictor is
obtained, and it is shown that the variance of the prediction errors is greater than the one obtained from SBL models. As a
consequence, we observe that the L2-structure of SBL is the same as an ARMA model on Z

d . Throughout, d denotes some
positive integer, 0 = (0, . . . ,0) and 1 = (1, . . . ,1) are the zeros and the unity vectors of Z

d and for any k = (k1, . . . ,kd),
l = (l1, . . . , ld) belonging to Z

d and z = (z1, . . . , zd) ∈ C
d we write k � l (resp. k ≺ l) iff km � lm (resp. km < lm) for m =

1, . . . ,d and zl = ∏d
j=1 z

l j

j . For p ∈ N
d, the following indexing subsets in N

d will be considered Γ [p] = {x ∈ N
d/0 � x � p},

Γ ]p] = Γ [p] \ {0}.

2. The Wiener–Itô representation

For any stationary Gaussian random field (e(t))t∈Zd with mean 0 and variance σ 2, we associate the spectral repre-

sentation, i.e., e(t) = ∫
π eit.λ dZ(λ) in which t.λ = ∑d

i=1 λiti for t = (t1, . . . , td) ∈ Z
d , λ = (λ1, . . . , λd) ∈ π = [−π,π [d and

Z is a Gaussian orthogonal stochastic measure with E{dZ(λ)} = 0 and spectral measure dF (λ) := E{|dZ(λ)|2} = σ 2

(2π)d dλ

where dλ means the Lebesgue measure on R
d . Let H = L2(π,Bπ , F ) denote the real Hilbert space consisting of the square

integrable complex functions f satisfying f (−λ) = f (λ) for any λ ∈ π . For any n � 1, we associated three real Hilbert
spaces based on H, the first is Hn = H⊗n the n-fold tensor product of H endowed by the inner product 〈 fn, gn〉⊗ =∫
πn fn(λ(n))gn(λ(n)) dF (λ(n)) where λ(n) = (λ1, . . . , λn) ∈ πn , fn(−λ(n)) = fn(λ(n)), ‖ fn‖2 < ∞, dF (λ(n)) = ∏n

i=1 dF (λi) and
dλ(n) = ∏n

i=1 dλi . The second one is Ĥn =H⊕n ⊂Hn the n-fold symmetrized tensor product of H defined by fn ∈ Ĥn iff fn
is invariant under permutation of their arguments, i.e., fn(λ(n)) = fn(λp(1), . . . , λp(n)) for all p ∈ P(n) where P(n) denotes
the group of all permutations of the set {1, . . . ,n} with an inner product 〈 fn, gn〉⊕ = n!〈 fn, gn〉⊗ for fn, gn ∈ Ĥn . The third
space is called Fock space over H denoted by �(H) and defined by �(H) = ⊕∞

n=0 Ĥn in which
⊕

denotes the direct orthog-
onal sum, whose elements are f := ( f0, f1, f2, . . .) with fn ∈ Ĥn , Ĥ0 =H0 =R and satisfying ‖ f ‖2 = ∑

n�0
1
n! ‖ fn‖2 < +∞.

Finally for any fn∈Hn , we define sym{ fn} by sym{ fn(λ(n))} = 1
n!

∑
p∈P(n) fn(λ(p(n))).

Let � = �(e) := σ(e(t), t ∈ Z
d) be the σ -algebra generated by all e(t), t ∈ Z

d , �t(e) := σ(e(s), s � t) and L2(�) be the
real Hilbert space of L2-functional of e(t), t ∈ Z

d , endowed by the inner product 〈X, Y 〉 = E{XY }. It is well known (see [6]
for further details) that L2(�) is isometrically isomorphic to �(H), i.e., for any stationary random field (X(t))t∈Zd of L2(�)

admits the so-called Wiener–Itô orthogonal representation, i.e.,

X(t) = f0 +
∑
r�1

∫
π r

fr(λ(r))eit.λ(r) dZ(λ(r)) (1)

where λ(r) := ∑r
i=1 λi , f0 = E{X(t)}, dZ(λ(r)) = ∏r

i=1 dZ(λi), fr ∈ Ĥr are referred as d-dimensional transfer functions of
(X(t))t∈Zd and uniquely determined and the integrals are the Wiener–Itô stochastic integrals with respect to Z .

Example 1. A general class of nonlinear random fields (X(t))t∈Zd which admits a regular solution are the Wiener fields, i.e.,

X(t) = g0 +
∞∑

r=1

∑
k(r)∈(Nd\{0})r

∑
s(r)∈(Nd≺)r

gk(r) (s(r))

r∏
j=1

hk j

(
e(t − s j)

)
(2)

where h j denotes the j-th Hermite polynomial with leading coefficient 1, i.e., h j(x) = (−1) je
x2
2 d j

dx j e− x2
2 , x ∈ R, (Nd≺)r :=

{s(r) ∈ (Nd)r: 0 � s1 ≺ s2 ≺ · · · ≺ sr} and where the Volterra’s kernels gk(r) (s(r)) are uniquely determined if there are assumed
to be symmetric functions in their arguments. Hence, by applying Itô’s formula, it is easily seen that X(t) admits a Wiener–
Itô orthogonal representation (1).

In the following section, various random fields satisfying the Wiener models (2) will be investigated.
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3. Wiener–Itô solution for subdiagonal bilinear random fields

Let us consider the subdiagonal bilinear random field (X(t))t∈Zd defined on some probability space (Ω,�, P ) (see [7]
and [9] for structural properties) denoted by SBLd(p,q,P,Q) subject to the recursion equation

X(t) = a0 +
∑

i∈Γ ]p]
ai X(t − i) +

∑
j∈Γ [q]

bje(t − j) +
∑ ∑

i∈Γ [P], j∈Γ ]Q]
cji X(t − i − j)e(t − j). (3)

In (3) (e(t))t∈Zd is an i.i.d(0, σ 2) Gaussian random field defined on the same probability (Ω,�, P ) with e(l) is independent
of X(k), k ≺ l. Model (3) may be viewed as a special case of Wiener’s field (2) and extend on ARMA random fields (see
Yao and Brockwell [10]). Noting here that different SBLd representations appear to depend on the lexicographic order chosen
on Z

d . Noting here that formally the ARCH-type bilinear random fields appear to be a particular case of more general bilinear
random fields (see [5] for an extensive discussion). Our aim objective here is to seek necessary and sufficient conditions
ensuring the existence of regular stationary solution with short memory of (3) in the Form (1). For this purpose define the
transfer functions

Θ(λ) = 1 −
∑

i∈Γ ]p]
aie

−ii.λ, Φ(λ) =
∑

j∈Γ [q]
bje

−ij.λ, Ψ0(λ) =
∑

j∈Γ ]Q]
cj0e−ij.λ,

Ψ (λ,μ) =
∑

i∈Γ [P]

∑
j∈Γ ]Q]

cjie
−i(i+j).λe−ij.μ

and assume the following:

Condition 3.1. All the characteristic roots of the polynomial Θ(z) = 1 − ∑
i∈Γ ]p] aizi are outside the unit circle, in the sense

that Θ(z) �= 0 for |zi | � 1, i = 1, . . . ,d (see also Yao and Brockwell [10] for further discussions).

Lemma 3.2. Assume that the SBLd model (3) has regular stationary solution. Then the transfer functions are given by the symmetriza-
tion of the following functions defined recursively by

f0 = σ 2 Ψ0(0) + a0

Θ(0)
, f1(λ) = Φ∗(λ)

Θ(λ)
, fr(λ(r)) = Ψ (λ(r−1), λr)

Θ(λ(r))
fr−1(λ(r−1)) if r � 2 (4)

with Φ∗(λ) = Φ(λ) + f0Ψ (0, λ).

Proof. The proof follows essentially the same arguments as in Terdik and Subba Rao [8]. �
Remark 1. It not difficult to see that the symmetrized transfer functions are given by

sym{ f0} = f0, sym
{

f1(λ)
} = f1(λ),

sym
{

fr(λ(r))
} = Θ−1(λ(r))

∑
j∈Γ [Q]

e−ij.λ(r)
∑

i∈Γ ]P]
cij sym

{
fr−1(λ(r−1))e−ii.λ(r−1)

}
, if r � 2.

Lemma 3.3. For any fn∈Hn, we have ‖ fn‖2 � n!‖sym{ fn}‖2 � 2‖ fn‖2 for any n � 1.

Proof. The proof follows from standard arguments (cf. Terdik and Subba Rao [8]). �
Theorem 3.4. A necessary and sufficient condition (NSD) for the existence of regular stationary solution for SBLd(p,q,P,Q) model (3)

is that ∑
r�0

‖ fr‖2 < +∞ (5)

where the transfer functions fr(λ(r)) are given by (4).

Proof. To prove Theorem 3.4, we use Lemmas 3.2, 3.3 and the fact that Var(X(t)) is finite iff the condition (5) holds true. �
Lemma 3.5. A simple sufficient condition for (5) is σ 2

d

∫ | Ψ (λ,μ) |2 dμ = c < 1, λ ∈ π.

(2π) π Θ(λ+μ)
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Proof. Since∫
π r

∣∣ fr(λ(r))
∣∣2

dF (λ(r)) =
∫

π r−1

{∫
π

∣∣∣∣ Ψ (λ,μ)

Θ(λ + μ)

∣∣∣∣2

dF (μ)

}∣∣ fr−1(λ(r−2), λ − λ(r−2))
∣∣2

dF (λ(r−2))dF (λ)

then, if there exists c such that σ 2

(2π)d

∫
π | Ψ (λ,μ)

Θ(λ+μ)
|2 dμ = c < 1 for any λ ∈ π , we get

∫
π r

∣∣ fr(λ(r))
∣∣2

dF (λ(r)) � c

∫
π r

∣∣ fr−1(λ(r−1))
∣∣2

dF (λ(r−1)) � σ 2cr−1

(2π)d

∫
π

∣∣∣∣Φ∗(λ)

Θ(λ)

∣∣∣∣2

dλ

so the condition (5) holds true. �
Corollary 3.6 (Superdiagonal model). A sufficient condition for the superdiagonal random field (i.e., ci,j = 0 for i � j in (3)) to have a

regular stationary solution is that σ 2

(2π)d

∫
π | Ψ (λ,μ)

Θ(λ+μ)
|2 dλ � K < 1, μ ∈ π .

Proof. In this case f0 = a0, f1(λ) = Φ∗(λ)
Θ(λ)

, fr(λ(r)) = Ψ (λ(r−1),λr )

Θ(λ(r))
fr−1(λ(r−1)), if r � 2, so, we obtain fr(λ(r)) =∏r

s=2
Ψ (λ(s−1),λs)

Θ(λ(s))
Ψ0(λ1). Using the last expression of fr(λ(r)), the condition of stationarity is thus

∞∑
r=1

(
σ 2

(2π)d

)r ∫
π r

∣∣ fr(λ(r))
∣∣2

dλ(r) < +∞. (6)

It is easy to see that the series (6) is dominated by a geometrically converged series. �
Corollary 3.7. Consider the separable model (see [9]), i.e.,

X(t) = a0 +
∑

i∈Γ ]p]
ai X(t − i) +

∑
j∈Γ [q]

bje(t − j) +
∑

i∈Γ ]Q]
c(1)

i e(t − i)
∑

j∈Γ [P]
c(2)

j X(t − i − j) (7)

then an NSD for the existence of regular stationary solution of the process (X(t))t∈Zd generated by (7) is that σ 2

(2π)d

∫
π |Ψ1(λ)Ψ2(λ)

Θ(λ)
|2 dλ

< 1 where Ψ1(λ) = ∑
i∈Γ ]Q] c(1)

i e−ii.λ and Ψ2(λ) = ∑
j∈Γ [P] c(2)

j e−ij.λ .

Proof. For any r � 2 we have

∫
π r

∣∣ fr( f λ(r))
∣∣2

dF (λ(r)) =
∫
π r

∣∣∣∣∣
r∏

l=1

Θ−1(λ(l))Ψ (λ(l−1), λl)

∣∣∣∣∣
2∣∣Θ−1(λ1)Φ

∗(λ1)
∣∣2

dF (λ(r))

=
∫
π r

∣∣∣∣∣
r∏

l=1

Θ−1(λ(l))Ψ1(λ(l))Ψ2(λ(l−1))

∣∣∣∣∣
2∣∣Θ−1(λ1)Φ

∗(λ1)
∣∣2

dF (λ(r))

=
∫
π

∣∣Θ−1(λ)Ψ1(λ)
∣∣2

dF (λ)

[∫
π

∣∣Θ−1(λ)Ψ1(λ)Ψ2(λ)
∣∣2

dF (λ)

]r−2

×
∫
π

∣∣Θ−1(λ1)Φ
∗(λ1)Ψ2(λ)

∣∣2
dF (λ).

The result follows by Theorem 3.4 iff
∫
π |Θ−1(λ)Ψ1(λ)Ψ2(λ)|2 dF (λ) < 1. �

Corollary 3.8. Consider the model

X(t) = a0 +
∑

i∈Γ ]p]
ai X(t − i) +

∑
j∈Γ [q]

bje(t − j) +
∑

j∈Γ ]P]
cj X(t − j − l)e(t − j) (8)

where l ∈N
d. Then the NSD for the existence of regular stationary solution for (8) is that

σ 2

(2π)d

∫
π

∣∣∣∣Ψ1(λ)

Θ(λ)

∣∣∣∣
2

dλ < 1. (9)
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Proof. In this case, Ψ1(λ) = ∑
i∈Γ ]Q] cie−iλ.i , Ψ2(λ) = e−iλ.l and Ψ0(λ) = Ψ1(λ)δl

0 . So the NSD for the regular stationary
solution reduces to (9). �
Corollary 3.9. Consider the model

X(t) = a0 +
∑

i∈Γ ]p]
ai X(t − i) +

∑
j∈Γ [q]

bje(t − j) +
∑

j∈Γ ]P]
cj X(t − j − l)e(t − l), (10)

where l ∈N
d \ {0}. Then the NSD for the existence of regular stationary solution for (10) is that

σ 2

(2π)d

∫
π

∣∣∣∣Ψ2(λ)

Θ(λ)

∣∣∣∣
2

dλ < 1. (11)

Proof. In this case, Ψ1(λ) = e−il.λ and Ψ2(λ) = ∑
i∈Γ ]Q] cie−ii.λ , so the NSD for the regular stationary solution reduces

to (11). �
Corollary 3.10 (SGARCH). Consider the GARCH(p,q) random field defined by

X(t) = η(t)
√

h(t) and h(t) = a0 +
∑

i∈Γ ]p]
ci X2(t − i) +

∑
j∈Γ ]q]

ajh(t − j) (12)

where (ci, i ∈ Γ ]p]) and (ai, i ∈ Γ [q]) are nonnegative constants with a0 > 0 and (η(t))t∈Zd is a Gaussian random field with zero
mean and variance 1. Then the model (12) has a regular stationary solution iff

∑
i∈Γ ]p] ai + ∑

j∈Γ ]q] cj < 1. Hence E{X(t)} = 0,

Cov(X(t), X(s)) = a0δ
t
s(1 − ∑

i∈ Γ ]p] ai − ∑
j∈Γ ]q] cj)

−1 .

Proof. Since the volatility process in (12) can be regarded as a special case of model (8) with l = 0, then the proof follows
thus from Corollary 3.8 and the positivity of the coefficients. �
4. Applications

Theorem 4.1 (ARMA representation). Assume that the field (X(t))t∈Zd defined by (3) is stationary, there exists an uncorrelated se-
quence of random fields (ξ(t))t∈Zd with zero mean and finite variance such that

X(t) = a0 +
∑

i∈Γ ]p]
ai X(t − i) +

∑
j∈Γ [q∗]

b∗
j ξ(t − j), b∗

0 = b0 = 1, (13)

where the coefficients (b∗
j , j ∈ Γ [q∗]) are functions of (aj, j ∈ Γ ]p]), (bj, j ∈ Γ |q]) and (cji, j ∈ Γ ]Q], i ∈ Γ [P]). The field (ξ(t))t∈Zd is

not Gaussian nor a martingale difference sequence when the cij ’s are not equal to zero.

Proof. The proof follows essentially the same arguments as in Bibi [2]. �
The above theorem implies that the spectral density of the field (X(t))t∈Zd is given by

f (λ) = σ 2

(2π)d

|Φ̃(λ)|2
|Θ(λ)|2 (14)

where Φ̃(λ) = ∑
j∈Γ [q∗] b∗

j e−ij.λ such that |Φ̃(λ)|2 = |Φ(λ)|2 + σ 2|Ψ0(λ)|2 + |D(λ)|2 for some transfer function D(λ). Hence,
the second order properties of every bilinear random field (X(t))t∈Zd satisfying Eq. (3) are similar to an ARMA(p,q∗). So,
one has to look to higher order moments and higher order cumulant spectra for further information on the process. The
best linear predictor of X(t + h) given by {X(s), s � t} where (X(t))t∈Zd satisfies (13) is now given:

Theorem 4.2. Let (X(t))t∈Zd be a stationary random field satisfying (13) and assume that the polynomial Φ̃(z) = ∑
j∈Γ [q∗] b∗

j zj �= 0

for all z ∈ C
d: |zi | � 1, i = 1, . . . ,d. Let X̂h(t) be the best linear predictor of X(t + h), 0 � h � 1 and h �= 0 when {X(s), s � t} is

given. Then

X̂h(t) =
(

1 − Θ(B)

Φ̃(B)

)
X(t + h)

where B is the backward shift operator, i.e., Bi X(t) = X(t − i) and σ 2
ξ = Var{ξ(t)} > Var{e(t)} = σ 2 .

Proof. The first assertion rests standard. The second follows essentially the same arguments as in Bibi [2]. �
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