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In this Note, we make explicit the limit law of the renormalized supercritical branching
random walk, giving credit to a conjecture formulated in Barral et al. (2012) [5] for a con-
tinuous analogue of the branching random walk. Also, in the case of a branching random
walk on a homogeneous tree, we express the law of the corresponding limiting renor-
malized Gibbs measures, confirming, in this discrete model, conjectures formulated by
physicists (Derrida and Spohn, 1988 [9]) about the Poisson–Dirichlet nature of the jumps
in the limit, and precising the conjecture by giving the spatial distribution of these jumps.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Cette Note explicite la loi limite d’un processus de branchement supercritique renormalisé,
confortant ainsi une conjecture formulée dans Barral et al. (2012) [5] pour un analogue
continu de cette marche. Dans le cas d’une marche aléatoire de branchement sur un arbre
homogène, nous donnons la loi limite de la mesure de Gibbs renormalisée associée, confir-
mant pour ce modèle discret des conjectures formulées par des physiciens (Derrida et
Spohn, 1988 [9]) à propos de la nature Poisson–Dirichlet des sauts observés à la limite,
tout en donnant la distribution spatiale de ces sauts.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and notations

We consider a branching random walk on the real line R. Initially, a particle sits at the origin. Its children form the first
generation; their displacements from the origin correspond to a point process on the line. These children have children of
their own (who form the second generation), and behave-relative to their respective positions-like independent copies of
the same point process L. And so on. We write |u| = n if an individual u is in the n-th generation, and denote its position
V (u) (and V (e) = 0 for the initial ancestor). We define the (logarithmic) moment generating function

∀t � 0, ψ(t) = lnE

[ ∑
|u|=1

e−tV (u)

]
∈ ]−∞;+∞],

where E denotes expectation with respect to P, the law of the branching random walk.
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The numbers of particles Nn , n � 1, in successive generations form a Galton–Watson process, which is supercritical if
and only if lnE(N1) = ψ(0) > 0, a condition we assume throughout, together with normalizing condition ψ(1) = 0. Then
the sequence

Wn =
∑
|u|=n

e−V (u), n = 0,1,2, . . .

(∑
∅

:= 0

)
(1)

is a nonnegative martingale, which converges almost surely to a limit W∞ . Moreover, P(W∞ > 0) > 0 if and only if
ψ ′(1−) < 0 and E[(W1) ln+(W1)] < ∞. In that case, the convergence holds in L1 norm too and W∞ > 0 almost surely
on the set of non-extinction of the Galton–Watson process. When ψ ′(1−) � 0, W∞ = 0 almost surely, and this gives rise to
the issue of finding natural renormalizations of (Wn)n�1. It is straightforward to see that this reduces to considering the
renormalization of

Wn,β =
∑
|u|=n

e−βV (u) (β � 1), (2)

where now ψ ′(1−) = 0. We further introduce the derivative martingale:

Zn =
∑
|u|=n

V (u)e−V (u). (3)

We reinforce our assumptions. Let W̃1 = W1 + ∑
|u|=1 V (u)+e−V (u). We assume

a) ψ ′′(1) < ∞, b) E
[
W̃1 ln+(W̃1)

3] < +∞. (4)

It is known that under (4) the martingale (Zn)n�1 converges almost surely towards a random variable Z∞ , which is strictly
positive conditionally on the survival of the system (see [7,1]). In what follows, we investigate the limiting laws of the
renormalized sequence (Wn,β )n for β > 1. In the following theorem, a) and b) of (4) are needed for the convergence in law
as it is shown in [14]. We identify the limit under additional assumptions.

Theorem 1. Assume that L is non-lattice, ψ(0) > 0, ψ(1) = ψ ′(1−) = 0 and (4). Let β > 1. The random variables (n
3
2 β Wn,β )n

converge in law towards a non-trivial random variable W∞,β . Moreover, if there exists δ > 1 such that E[(W1,β + N1)
δ] < +∞, the

law of W∞,β is, up to a multiplicative constant c, that of a stable subordinator Tβ of index 1/β taken at an independent time Z∞:

W∞,β
law= cTβ(Z∞).

We notice that this result is obtained in [17] in the special case where the Galton–Watson tree is homogeneous and the
variables V (u), |u| = 1, are Gaussian and independent.

2. The case of random multiplicative cascades

We point out that Theorem 1 has direct applications to random multiplicative cascades since random multiplicative cas-
cades can be seen as branching random walks where the number of children for each particle has been set to two. Random
multiplicative cascades were introduced by B. Mandelbrot in [15] as a toy model for energy dissipation in a turbulent flow.
More precisely, the closed dyadic subintervals of [0,1] are naturally encoded by the nodes of the binary tree, i.e., the finite
words over the alphabet {0,1} via the mapping u = u1 · · · un �→ Iu = [∑n

k=1 uk2−k,2−n + ∑n
k=1 uk2−k].

In the notations of the previous section (recall that ψ(1) = 0 and notice that ψ(0) = log(2) > 0), let us assume that V (0)

and V (1) are i.i.d., and define a sequence of random measures on [0,1] as follows. Let dx denote the Lebesgue measure on
[0,1]. We define for n � 1 the random measure

μn(dx) = 2ne−V (u(x)) dx,

where u(x) is the unique element of {0,1}n such that x ∈ Iu(x) when x is not dyadic. We recall the following theorem of [12]
first conjectured in the seminal work [15]:

Theorem 2 (Kahane). The weak-star limit μ(dx) = limn→∞ μn(dx) exists almost surely. Moreover, μ is almost surely non-trivial if
and only if ψ ′(1−) < 0.

We are interested in the situation where ψ ′(1−) � 0 in which case the limiting measure vanishes. More precisely, as
suggested in [15], we want to find a renormalization sequence (λn)n�1 such that νn(dx) = λnμn(dx) converges weakly, at
least in law. In accordance with the previous section we assume now that (4) holds and ψ ′(1) = 0. We define for β > 0:

μn,β(dx) = 2ne−βV (u(x))(x)dx.
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When 0 < β < 1, the situation boils down to the non-degenerate (classical) situation. For β = 1, this corresponds to the so-
called boundary case which was studied in [2]. One can deduce from [2] and [7] that n1/2μn,1 converges in probability to

a positive multiple of a positive statistically self-similar measure obtained as the almost sure weak limit of − dμn,β

dβ

∣∣
β=1(dx),

call it μ̃∞ (the same convergence in law when V (0) is Gaussian can be deduced from [17]).
We are especially interested in the low temperature case β > 1. From Theorem 1, we deduce:

Corollary 3. Assume ψ(1) = ψ ′(1) = 0 and (4). Let β > 1. Suppose there exists δ > 1 such that ψ(δβ) < ∞. The random measures

(n
3
2 βμn,β (dx))n weakly converge in law towards a random Borel measure μ∞,β (dx) on [0,1]. The law of the measure μ∞,β (dx) is

given by the derivative (in the sense of distributions) of the function t → cTβ(μ̃∞[0, t]) where c > 0 is some positive constant and Tβ

is a stable subordinator of index 1/β independent from μ̃∞(dx).

We will denote this limiting law cTβ(μ̃∞(dx)). We stress that this implies the following result on renormalized Gibbs
measures:

Corollary 4. Under the assumptions of Corollary 3, we have the following convergence in law (for the weak convergence of measures):

lim
n→∞

μn,β(dx)

μn,β([0,1]) = Tβ(μ̃∞(dx))

Tβ(μ̃∞[0,1]) .

3. The continuous case: Gaussian multiplicative Chaos

In this section, we discuss the continuous analogue of the Random multiplicative cascades with lognormal weights:
Gaussian multiplicative Chaos. One can work with other weights than lognormal but we stick to this case for the sake of
simplicity. Gaussian multiplicative Chaos was introduced by J.P. Kahane in [11]. Gaussian multiplicative Chaos and lognormal
Random multiplicative cascades bear striking similarities; in particular, one can introduce a continuous analogue to the
discrete star equation (cf. [3,16]) which plays a key role in the identification of the limit in the above theorems. In some
sense, there is a correspondence between both models in the sense that roughly all theorems in the discrete case have
continuous analogues. In the paper [5] (Section 6 perspectives), the authors conjectured an analogue to Corollary 4 for
Gaussian multiplicative Chaos. In fact, Theorem 1 leads to an even stronger version of the conjecture in [5].

The above result on renormalized Gibbs measures, i.e. Corollary 4, and the conjecture in [5] on the limit of a continuous
renormalized Gibbs measure share a common feature which is proved or conjectured to hold for many supercritical Gibbs
measures (also called the glassy phase in the physics literature): the limiting object is a purely atomic measure whose jumps
are distributed according to a Poisson–Dirichlet distribution, i.e. the ordered jumps of a renormalized stable subordinator.
This universal feature (proved for instance in the case of the REM, etc.) has been conjectured by physicists (see [8,9]).
Corollary 4 and the corresponding conjecture in [5] are stronger than the conjecture of physicists since it also provides the
spatial distribution of the jumps.

4. Proofs

Proof of Theorem 1. It is proved in [14] that the sequence (n
3
2 β Wn,β )n converges in law towards a random variable W∞,β .

This random variable is non-trivial since

n
3
2 β Wn,β �

(
n3/2 max|u| e−V (u)

)β

�
(
n3/2e−min|u| V (u)

)β = (
e−(min|u| V (u)− 3

2 lnn)
)β

.

It is proved in [1] that the last quantity min|u| V (u) − 3
2 ln n converges in law as n → ∞ towards a non-trivial limit. So

W∞,β cannot be 0. It just remains to identify the limiting law W∞,β . To that purpose, it is straightforward to check that
W∞,β satisfies the star equation ([15]):

W∞,β
law=

∑
|u|=1

e−βV (u)W (u)
∞,β ,

where conditionally on (u, V (u), |u| = 1) the family (W (u)
∞,β )|u|=1 are independent copies of W∞,β . This equation is carefully

studied in [13]. Since t �→ ψβ(t) = lnE[∑|u|=1 e−βtV (u)] vanishes for t = 1
β

with ψ ′
β( 1

β
) = 0, the result follows from [13] (see

also [10] for the case of homogeneous trees). �
Convergence of the random measures of Section 2. It is convenient to first consider measures on the symbolic space
{0,1}N+ . For each finite dyadic word u we denote by [u] the cylinder consisting of infinite words with u as prefix and
define Q (u) = e−V (u) . {0,1}N+ is endowed with the Borel σ -field generated by the cylinders taken as a basis of open sets.
Denote the dyadic coding by π : {0,1}N+ → [0,1]: π(x1x2 · · ·) = ∑

k�1 xk2−k . Also denote by λ the uniform measure on

{0,1}N+ .
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For β � 1 and n � 1, let νn,β stand for the measure whose density with respect to λ is given by 2n Q (u)β ; we have
μn,β = νβ,n ◦ π−1. Also, let ν̃n be the signed measure whose density with respect to λ is given by −2n Q (u) log Q (u)

over each cylinder [u] of generation n; we have ν̃n ◦ π−1(dx) = − dμn,β

dβ

∣∣
β=1(dx). It follows from [6] that, almost surely,

ν̃n is ultimately positive and converges weakly to a positive measure ν̃∞; consequently − dμn,β

dβ

∣∣
β=1(dx) weakly con-

verges to μ̃∞(dx) = ν̃∞ ◦ π−1(dx). Let N(β)

ν̃∞ be a positive Borel random measure on {0,1}N+ × R
∗+ , whose law condi-

tionally on ν̃∞ is that of a Poisson point measure with intensity βΓ (1/β)
ν̃∞(dx)dz

z1+1/β . Then define the random measure

ν̃∞,β (A) = ∫
A

∫
R

∗+ zN(β)

ν̃∞ (dx,dz) and assume that Tβ is normalized so that its Laplace exponent is −θ1/β . For all con-

tinuous function f : {0,1}N+ → R, |n3β/2νn,β ( f )| � n3β/2‖νn,β‖‖ f ‖∞ (Wn,β = ‖νn,β‖). Since the laws of the variables
n3β/2νn,β ({0,1}N+ ), n � 1 form a tight sequence (Theorem 1), so do the laws of the random measures n3β/2νn,β , n � 1,
on the compact set {0,1}N+ for the weak convergence of measures. Let us show that the unique limit point of this se-
quence is the law of cν̃∞,β , for some c > 0. Since the linear combinations of the indicator functions of cylinders generate
the space of real-valued continuous functions on {0,1}N+ , it is enough to show that for some c > 0, for each p � 1,
(n3β/2νn,β ([u]))u∈{0,1}p converges in law to c(̃ν∞,β ([u]))u∈{0,1}p as n → ∞. Using the self-similarity of the construction
and Theorem 1, it is not difficult to see that (n3β/2νn,β ([u]))u∈{0,1}p converges in law to (Q (u)β W∞,β (u))u∈{0,1}p , where
(W∞,β (u))u∈{0,1}p is independent of (Q (u))u∈{0,1}p and its components are independent copies of W∞,β . On the other hand,
a calculation combining standard properties of Poisson measures with the fact that (̃ν∞([u]))u∈{0,1}p = (Q (u)Z∞(u))u∈{0,1}p ,
where (Z∞(u))u∈{0,1}p is independent of (Q (u))u∈{0,1}p and its components are independent copies of Z∞ , shows that the

Laplace transform of (ν∞,β ([u]))u∈{0,1}p equals that of (Q (u)β T (u)
β (Z∞(u))u∈{0,1}p , where the T (u)

β are independent copies
of Tβ , and also are independent of the (V (u), Z∞(u))u∈{0,1}p . Due to Theorem 1, this yields the desired equality in law. It
follows that n3β/2μn,β converges weakly in law to cμ̃∞,β := cν̃∞,β ◦ π−1. Moreover, the measure ν̃∞ assigns no mass to
the countable set of points of {0,1}N+ encoding dyadic points (see [4]), hence so does ν̃∞,β , and after projection so do
μ̃∞ and μ̃∞,β with dyadic numbers. The previous information are enough to get the equality in law, for each p � 1, of
(μ̃∞,β (Iu))u∈{0,1}p and that of (Tβ(μ̃∞)(Iu))u∈{0,1}p , and then the equality in law of μ̃∞,β (dx) and Tβ(μ̃∞(dx)), hence the
desired conclusion. �
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