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Let D be an integral domain and SFs(D) be the set of stable star operations of finite type
on D . In this note, we show that if Ω is the set of nonzero prime ideals P of D with P t =
D , then |Ω| + 1 � |SFs(D)| � 2|Ω|. We also show that if |Ω| < ∞, then |SFs(D)| = |Ω| + 1
if and only if Ω is linearly ordered under inclusion; and |SFs(D)| = 2|Ω| if and only if each
pair of elements in Ω are incomparable.
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r é s u m é

Soit D un anneau intègre et SFs(D) l’ensemble des opérations étoile, stables, de type
fini sur D . Nous montrons dans cette note que, si Ω désigne l’ensemble des idéaux
premiers non nuls P de D tels que P t = D , alors |Ω|+ 1 � |SFs(D)|� 2|Ω|. Nous montrons
également que, si |Ω| < ∞, alors |SFs(D)| = |Ω| + 1 si et seulement si Ω est totalement
ordonné par l’inclusion et |SFs(D)| = 2|Ω| si et seulement si les éléments de Ω sont deux
à deux incomparables.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let D be an integral domain with quotient field K . Let F(D) (resp., f(D)) be the set of nonzero fractional (resp., nonzero
finitely generated fractional) ideals of D; so f(D) ⊆ F(D). A mapping I �→ I∗ of F(D) into F(D) is called a star operation on
D if for all 0 �= a ∈ K and I, J ∈ F(D), the following conditions are satisfied:

(1) (aD)∗ = aD and (aI)∗ = aI∗ ,
(2) I ⊆ I∗; I ⊆ J implies I∗ ⊆ J∗ , and
(3) (I∗)∗ = I∗ .

Given any star operation ∗ on D , one can construct two new star operations ∗ f and ∗w on D . The ∗ f -operation is defined
by I∗ f = ⋃{ J∗| J ⊆ I and J ∈ f(D)} and the ∗w -operation is defined by I∗w = {x ∈ K |x J ⊆ I for some J ∈ f(D) with J∗ = D}.
Obviously, (∗ f ) f = ∗ f and (∗ f )w = (∗w) f = ∗w .

A star operation ∗ on D is said to be of finite type if ∗ f = ∗. An I ∈ F(D) is called a ∗-ideal if I∗ = I , while a ∗-ideal is
a maximal ∗-ideal if it is maximal among proper integral ∗-ideals of D . Let ∗-Max(D) denote the set of maximal ∗-ideals
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of D . It is well known that a maximal ∗ f -ideal is a prime ideal, each prime ideal minimal over a ∗ f -ideal is a ∗ f -ideal, and
∗ f -Max(D) �= ∅ when D is not a field. The most well-known examples of star operations are the d-, v-, t-, and w-operations.
The d-operation is just the identity function on F(D), i.e., Id = I for all I ∈ F(D); so d = d f = dw . The v-operation is defined
by I v = (I−1)−1, where I−1 = {x ∈ K |xI ⊆ D}, while the t-operation (resp., w-operation) is given by t = v f (resp., w = v w ).
For two star operations ∗ and ∗1 on D , we mean by ∗ � ∗1 that I∗ ⊆ I∗1 for all I ∈ F(D). Clearly, if ∗� ∗1, then ∗ f � (∗1) f ,
∗w � (∗1)w , and ∗w � ∗ f � ∗. We know that if ∗ is any star operation on D , then d � ∗ � v , and hence d � ∗ f � t and
d � ∗w � w . For basic properties of star operations, see [5, Sections 32 and 34].

A star operation ∗ on D is said to be stable if (I ∩ J )∗ = I∗ ∩ J∗ for each I, J ∈ F(D). The last statement of the following
lemma provides a very useful characterization of stable star operations of finite type. We will use this fact without any
reference in the subsequent argument.

Lemma 0. Let ∗ be a star operation on D.

(1) [2, Theorem 2.16] ∗ f -Max(D) = ∗w -Max(D).
(2) [2, Corollary 2.10] I∗w = ⋂

P∈∗ f -Max(D) IDP for all I ∈ F(D).

(3) (Cf. [1, Corollary 4.2].) ∗ is stable and of finite type if and only if ∗ = ∗w .

Let SFs(D) (resp., S(D), SF(D)) be the set of stable star operations of finite type (resp., star operations, star operations
of finite type) on D; so SFs(D) ⊆ SF(D) ⊆ S(D). It is clear that |SFs(D)| = 1 if and only if d = w , if and only if every
maximal ideal of D is a t-ideal [8, Proposition 2.2]. This type of integral domains is sometimes called a DW-domain and has
been studied by many authors [3,4,8,9]. For example, a Prüfer domain or an integral domain of (Krull) dimension one is a
DW-domain. In particular, if |S(D)| < ∞, then d = w [6, Proposition 2.1], and thus |SFs(D)| = 1. In [6], the authors studied
integral domains D with |S(D)| � 2 in the integrally closed and Noetherian cases. Among many interesting results, they
showed that if |SFs(D)| = 2, then D has at most one prime ideal that is not a w-ideal [6, Corollary 2.8]. They also showed
that if D is a Krull domain, then |SFs(D)| = 2 if and only if dim(D) = 2 and D has a unique maximal ideal of height two [6,
Corollary 2.10]. It is easy to show that if D is a Krull domain, then D has a unique prime ideal that is not a w-ideal if and
only if dim(D) = 2 and D has a unique maximal ideal of height two. It therefore seems natural to ask if the converse of [6,
Corollary 2.8] is true, which has inspired this article.

Let Ω be the set of prime ideals P of D such that P t = D . In this paper, we compute |SFs(D)| for any integral domain D .
Precisely, we show that |Ω| + 1 � |SFs(D)| � 2|Ω| . We also show that if |Ω| < ∞, then |SFs(D)| = |Ω| + 1 if and only if Ω

is linearly ordered under inclusion; and |SFs(D)| = 2|Ω| if and only if each pair of elements in Ω are incomparable. As a
corollary, we have that |SFs(D)| = 2 if and only if D has a unique maximal ideal that is not a w-ideal.

2. Main results

Let D be an integral domain and Ω be the set of prime ideals P of D with P t = D . Let SFs(D) be the set of stable star
operations of finite type on D . In this section, we show that |Ω| + 1 � |SFs(D)| � 2|Ω| .

Lemma 1. For a nonzero prime ideal P of D, let

E∗P = EDP ∩ E w

for all E ∈ F(D).

(1) ∗P is a stable star operation of finite type.
(2) P t � D if and only if ∗P = w.

Proof. (1) By [6, Proposition 2.7], ∗P is a star operation of finite type. It is also clear that ∗P is stable because the w-
operation is stable.

(2) Assume that P t � D . Let Q be a maximal t-ideal of D with P ⊆ Q . Then, for each E ∈ F(D), we have E w ⊆ E w D Q =
EDQ ⊆ EDP , and thus E∗P = EDP ∩ E w = E w . Thus ∗P = w . For the converse, assume P t = D . Then P∗P = PDP ∩ P w =
PDP ∩ D = P � D = P w , and thus ∗P �= w . Hence ∗P = w implies P t � D . �
Lemma 2. For each M1, M2 ∈ Ω ,

(1) ∗M1 � ∗M2 if and only if M1 ⊇ M2 .
(2) M1 �= M2 if and only if ∗M1 �= ∗M2 .

Proof. (1) Assume ∗M1 � ∗M2 . If M2 � M1, then D = (M2)
∗M1 ⊆ (M2)

∗M2 = M2, a contradiction. Thus M2 ⊆ M1. Conversely,
if M2 ⊆ M1, then EDM1 ⊆ EDM2 , and thus E∗M1 ⊆ E∗M2 for all E ∈ F(D). Thus ∗M1 � ∗M2 .
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(2) For convenience, assume that M2 � M1. Then (M1)
∗M1 = M1 � D = (M2)

∗M1 , and thus ∗M1 �= ∗M2 . The converse is
clear. �

Recall that I∗w = ⋂
P∈∗ f -Max(D) IDP for all I ∈ F(D) by Lemma 0(2). We next use this result to give another interesting

characterization of ∗w -operations.

Lemma 3. Let ∗ be a star operation on D, and let Λ = ∗ f -Max(D) ∩ Ω .

(1) Λ = ∅ if and only if ∗w = w.
(2) If Λ �= ∅, then E∗w = ⋂

M∈Λ E∗M for all E ∈ F(D). In particular, ∗w � w.

Proof. (1) Assume that Λ = ∅. Then, since ∗ f � t , each maximal ∗ f -ideal is a t-ideal. Hence ∗ f -Max(D) = t-Max(D), and
thus ∗w = w . The converse is clear.

(2) By Lemma 1, EDP ∩ E w = E w for all P ∈ ∗ f -Max(D) \ Λ. Thus we have

E∗w =
⋂

P∈∗ f -Max(D)

EDP

=
( ⋂

P∈∗ f -Max(D)\Λ
EDP

)
∩

( ⋂
M∈Λ

EDM

)
∩ E w

=
( ⋂

P∈∗ f -Max(D)\Λ

(
EDP ∩ E w)) ∩

( ⋂
M∈Λ

(
EDM ∩ E w))

= E w ∩
( ⋂

M∈Λ

E∗M

)

=
⋂

M∈Λ

E∗M .

The “in particular” part follows because M∗w = M �= D = M w for all M ∈ Λ. �
For a nonempty set Δ of nonzero prime ideals of D , let

E∗Δ =
⋂
P∈Δ

E∗P

for all E ∈ F(D). It is clear that ∗Δ is a stable star operation on D because each ∗P is stable by Lemma 1. Moreover, if
Δ is finite, then ∗Δ is of finite type. In particular, if Δ = {P } is a singleton set, then ∗Δ = ∗P . Also, by Lemma 3(1), it is
reasonable to denote by ∗Δ the w-operation w on D when Δ = ∅.

Theorem 4.

(1) If ∗ is a stable star operation of finite type, then ∗ = ∗Δ for a subset Δ of Ω .
(2) |Ω| + 1 � |SFs(D)| � 2|Ω| .

Proof. (1) This follows directly from Lemmas 0(3) and 3.
(2) By (1), we have |SFs(D)| � 2|Ω| . To prove that |Ω| + 1 � |SFs(D)|, we first note that if Ω = ∅, then t-Max(D) is the

set of maximal ideals of D . Hence d = w , and thus SFs(D) = {d}; so |Ω| + 1 � 1 = |SFs(D)|. Next, assume that Ω �= ∅. Then
∗M ∈ SFs(D), w �= ∗M and ∗M1 �= ∗M2 for all M, M1, M2 ∈ Ω with M1 �= M2 by Lemmas 1 and 2. Thus |Ω|+ 1 � |SFs(D)|. �

Let X be an indeterminate over D , D[X] be the polynomial ring over D , and Ω(D[X]) be the set of nonzero prime
ideals Q of D[X] with Q t = D[X]. If D is a field, then D[X] is a PID, and so |SFs(D[X])| = 1. But if D is not a field,
then |Ω(D[X])| = ∞ (note that if P is a maximal t-ideal of D , then P [X] is a maximal t-ideal (cf. [7, Proposition 1.1]) but
D[X]/P [X] ∼= (D/P )[X] has infinitely many prime ideals). Thus |SFs(D[X])| = ∞ by Theorem 4(2). In fact, by Theorem 4(2),
|Ω| = ∞ if and only if |SFs(D)| = ∞. So when we compute |SFs(D)|, we are mainly interested in integral domains D with
Ω finite.

Corollary 5. If |Ω| < ∞, then

(1) |SFs(D)| = |Ω| + 1 if and only if Ω is linearly ordered under inclusion.
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(2) |SFs(D)| = 2|Ω| if and only if each pair of elements in Ω are incomparable.

Proof. (1) Assume to the contrary that there are M1, M2 ∈ Ω such that Mi � M j for i, j = 1,2. Let Δ = {M1, M2}. Then
(M1 ∩ M2)

∗Δ = M1 ∩ M2 � D = (M1 ∩ M2)
w , and so ∗Δ �= w . Next, let M ∈ Ω . Clearly, ∗Δ �= ∗M1 ,∗M2 , and so we assume

M �= M1, M2. If M1 ∩ M2 ⊆ M , then M � Mi for i = 1,2, and so M∗Δ = D �= M = M∗M ; hence ∗Δ �= ∗M . If M1 ∩ M2 � M , then
(M1 ∩ M2)

∗M = D �= M1 ∩ M2 = (M1 ∩ M2)
∗Δ ; so ∗M �= ∗Δ . Thus |SFs(D)| � |Ω| + 2, a contradiction. The converse follows

directly from Lemma 2 and Theorem 4(1).
(2) (⇒) Let M1, M2 ∈ Ω be such that M1 � M2. Then ∗M1 � ∗M2 by Lemma 2, and hence E∗M2 = E∗M1 ∩ E∗M2 for

all E ∈ F(D). Thus ∗M2 = ∗{M1,M2} , which implies that |SFs(D)| � 2|Ω| − 1 � 2|Ω| . (⇐) For the converse, let Λ and Δ be
two distinct subsets of Ω (for convenience, assume Λ � Δ). Choose M ∈ Λ \ Δ. Then M∗Δ = ⋂

P∈Δ M∗P = D �= M = M∗Λ

because M is not comparable to each prime ideal in Δ. Thus ∗Δ �= ∗Λ . Hence 2|Ω| � |SFs(D)|, and therefore 2|Ω| = |SFs(D)|
by Theorem 4(2). �

The next corollary is an easy consequence of Theorem 4; so we omit the proof.

Corollary 6. |SFs(D)| = 2 if and only if D has a unique maximal ideal that is not a t-ideal.

We mean by t-dim(D) = 1 that D is not a field and each prime t-ideal of D is a maximal t-ideal. Examples of integral
domains with t-dim(D) = 1 include Krull domains and one dimensional integral domains.

Corollary 7. (Cf. [6, Corollary 2.11(2)].) If t-dim(D) = 1, then |SFs(D)| = 2 if and only if dim(D) = 2 and D has a unique maximal
ideal of height two.

Proof. By Corollary 6, D has a unique maximal ideal that is not a t-ideal. But, note that each height one prime ideal is a
t-ideal; so the maximal ideal must be of height two. �

It is not easy in general to compute the exact value of |SFs(D)|, because there are distinct nonempty subsets Δ and Λ

of Ω such that ∗Δ = ∗Λ (for example, if M1, M2 ∈ Ω with M1 � M2, then {M1, M2} �= {M2} but ∗{M1,M2} = ∗{M2}). We close
this paper by giving an answer to the question when ∗Δ �= ∗Λ .

Proposition 8. Let Δ and Λ be two distinct nonempty subsets of Ω . Then ∗Δ = ∗Λ if and only if (i) for each P ∈ Δ, there is a Q ∈ Λ

such that P ⊆ Q and (ii) for each Q ′ ∈ Λ, there is a P ′ ∈ Δ such that Q ′ ⊆ P ′ .

Proof. (⇒) Assume to the contrary that (i) does not hold. Then there is a prime ideal P ∈ Δ such that P � Q for all Q ∈ Λ.
Hence P∗Λ = ⋂

Q ∈Λ P∗Q = ⋂
Q ∈Λ(D Q ∩ P w) = D �= P = P∗Δ . Thus ∗Δ �= ∗Λ . By the same way, we have that if (ii) does not

hold, then ∗Δ �= ∗Λ . (⇐) Let E ∈ F(D). For Q ∈ Λ, let P Q be a prime ideal in Δ such that Q ⊆ P Q . Then by Lemma 2,
E∗Λ = ⋂

Q ∈Λ E∗Q ⊇ ⋂
Q ∈Λ E∗P Q ⊇ ⋂

P∈Δ E∗P = E∗Δ . Also, by (ii), we have E∗Λ ⊆ E∗Δ . Thus E∗Δ = E∗Λ . �
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