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This Note is devoted to the analysis of the null controllability of a nonlinear reaction–
diffusion system, approximating a parabolic–elliptic system, modeling electrical activity in
the heart. The uniform, with respect to the degenerating parameter, null controllability of
the approximating system by a single control force acting on a subdomain is shown. The
proof needs a precise estimate with respect to the degenerating parameter and it is done
combining Carleman estimates and energy inequalities.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Ce travail est consacré à l’analyse de la nulle contrôlabilité d’un système dégénéré de
réaction–diffusion non-linéaire modélisant l’activité électrique du cœur. Notre contrôle agit
dans un sous-domaine fixe du domaine du coeur. Nous prouvons la nulle contrôlabilité de
notre modèle en établissant en particulier une estimation de Carleman pour l’équation
dégénéré. Des estimations globales de type Carleman et la régularité parabolique sont
employées.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let Ω ⊂ R
N be a bounded connected open set whose boundary ∂Ω is regular enough and ω a nonempty subset of Ω .

Given T > 0, in Ω we consider the controllable bidomain model (in R
3 it describes electrical activities):

⎧⎪⎪⎨
⎪⎪⎩

cm∂t v − div
(
Mi(x)∇ui

) + h(v) = f χω in Q := Ω × (0, T ),

cm∂t v + div
(
Me(x)∇ue

) + h(v) = 0 in Q := Ω × (0, T ),

ui = 0, ue = 0 on Σ := ∂Ω × (0, T ),

v(0) = v0 in Ω.

(1)
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In (1), v = ui − ue , h is a nonlinear function, χω is the characteristic function of ω and f is a control. We assume that the
diffusion matrices Mi and Me are of class C∞ and uniformly elliptic in x. If Mi ≡ μMe for some constant μ ∈R, then (1) is
simplified to the monodomain model⎧⎪⎪⎨

⎪⎪⎩

cm∂t v − μ
μ+1 div

(
Me(x)∇v

) + h(v) = f χω in Q ,

−div
(
M(x)∇ue

) = div
(
Mi(x)∇v

)
in Q ,

v = 0, ue = 0 on Σ,

v(0) = v0 in Ω,

(2)

where M = Me + Mi .
We approximate the monodomain model by the family of parabolic systems⎧⎪⎪⎨

⎪⎪⎩

cm∂t vε − μ
μ+1 div

(
Me(x)∇vε

) + h
(

vε
) = f εχω in Q ,

ε∂t uε
e − div

(
M(x)∇uε

e

) = div
(
Mi(x)∇vε

)
in Q ,

vε = 0, uε
e = 0 on Σ,

vε(0) = v0, uε
e (0) = ue,0 in Ω,

(3)

where ε is a positive constant and ue,0 is any function in the space of initial data.
The purpose of this Note is to give an answer to the following question:
If there exists a control f ε , for each ε > 0, that drives the solution (vε , uε

e ) of (3) to zero at time t = T , i.e.

vε(T ) = uε
e (T ) = 0,

is it true that when ε → 0 the sequence of controls f ε converges to a function f that drives the solution (v, ue) of (2) to zero at time
t = T ?

Since the bidomain model is a system of two coupled parabolic equations and the monodomain model is a system of
parabolic–elliptic type, these two systems have, at least a priori, different control properties. Therefore, it is natural to ask
if the controllability of the monodomain model can be seen as a limit process of the controllability of a family of parabolic
systems.

It is not difficult to see that a positive answer to this question is equivalent with proving that the control sequence f ε

is bounded with respect to ε .
In order to answer the question made before, we consider the following linearized version of (3):⎧⎪⎪⎨

⎪⎪⎩

cm∂t vε − μ
μ+1 div

(
Me(x)∇vε

) + a(x, t)vε = f εχω in Q ,

ε∂t uε
e − div

(
M(x)∇uε

e

) = div
(
Mi(x)∇vε

)
in Q ,

vε = 0, uε
e = 0 on Σ,

vε(0) = v0, uε
e (0) = ue,0 in Ω,

(4)

for a given function a = a(x, t) in L∞(Q ).
Our first main result in this work gives the uniform null controllability of (4).

Theorem 1. Given v0 and ue,0 in L2(Ω), then, for each ε > 0, there exists a control f ε ∈ L2(ω × (0, T )) so that the solution (vε, uε
e )

of (4) is driven to zero at time T , i.e.

vε(T ) = 0, uε
e (T ) = 0.

Moreover, the control f ε satisfies
∥∥ f εχω

∥∥2
L2(Q )

� C
(‖v0‖2

L2(Ω)
+ ε‖ue,0‖2

L2(Ω)

)
. (5)

The next second main result gives a positive answer to the question made above.

Theorem 2. Given v0 and ue,0 in L2(Ω) and let qN satisfying

qN ∈ (2,∞) if N = 1,2,
N + 2

2
< qN < 2

N + 2

N − 2
if N � 3. (6)

We have:
• If h is C1(R), global Lipschitz and satisfies h(0) = 0. There exists a control f ε ∈ L2(ω × (0, T )) such that the solution (vε, uε

e ) of (3)
satisfies

vε(T ) = uε
e (T ) = 0.

Besides, the control f ε has the estimate∥∥ f εχω

∥∥
2 � C

(‖v0‖L2(Ω) + ε‖ue,0‖L2(Ω)

)
. (7)
L (Q )
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• If h is a C1 function satisfying

h(0) = 0,
h(v1) − h(v2)

v1 − v2
� −C, ∀v1 
= v2, (8)

0 < lim inf|v|→∞
h(v)

v3
� lim sup

|v|→∞
h(v)

v3
< ∞ (9)

and (v0, ue,0) ∈ (H1
0(Ω) ∩ W

2(1− 1
qN

),qN (Ω))2 , with ‖(v0, ue,0)‖L∞(Ω) � γ , for a sufficient small γ > 0 does not depending on ε.

There exists a control f ε ∈ LqN (ω × (0, T )) such that the solution (vε, uε
e ) of (3), with (vε, uε

e ) ∈ (W 2,1
qN (Q ))2 , satisfies

vε(T ) = uε
e (T ) = 0.

Moreover, the control f ε has the estimate
∥∥ f εχω

∥∥2
LqN (Q )

� C
(‖v0‖2

L2(Ω)
+ ε‖ue,0‖2

L2(Ω)

)
. (10)

Proof of Theorem 2 is done combining Theorem 1 and an appropriate version of Kakutani’s fixed point theorem (see, for
example, [4]) and will not be reproduced here. In the next section we will focus in the proof of Theorem 1. The detailed
proofs will be given in a forthcoming paper.

2. Uniform null controllability for the linearized system

It is well known that the proof of Theorem 1 is equivalent with proving an observability inequality for the adjoint
system:

⎧⎪⎪⎨
⎪⎪⎩

−cm∂tϕ
ε − μ

μ+1 div
(
Me(x)∇ϕε

) + a(t, x)ϕε = div
(
Mi(x)∇ϕε

e

)
in Q ,

−ε∂tϕ
ε
e − div

(
M(x)∇ϕε

e

) = 0 in Q ,

ϕε = 0, ϕε
e = 0 on Σ,

ϕε(T ) = ϕT , ϕε
e (T ) = ϕe,T in Ω.

(11)

More precisely, in order to prove Theorem 1, it is sufficient to show the existence of an universal constant C , which is
bounded with respect to ε , so that the observability inequality

ε
∥∥ϕε

e (0)
∥∥2

L2(Ω)
+ ∥∥ϕε(0)

∥∥2
L2(Ω)

� C

∫∫

ω×(0,T )

∣∣ϕε
∣∣2

dx dt (12)

holds for every solution of the adjoint system (11) with initial data (ϕT ,ϕe,T ) ∈ L2(Ω)2.
To prove (12), we consider ϕT and ϕe,T smooth enough and define ρε(x, t) = div(M(x)∇ϕε

e (x, t)). The pair (ϕε,ρε)

satisfies:⎧⎪⎪⎨
⎪⎪⎩

−cm∂tϕ
ε − μ

μ+1 div
(
Me(x)∇ϕε

) + a(x, t)ϕε = μ
μ+1ρε in Q ,

−ε∂tρ
ε − div

(
M(x)∇ρε

) = 0 in Q ,

ϕε = 0, ρε = 0 on Σ,

ϕε(T ) = ϕT , ρε(T ) = ρT in Ω.

(13)

We apply a Carleman estimate for non-degenerate heat equations to Eq. (13)1 (see, for example, [2,3,5–7]) and apply a
sharp Carleman inequality, with respect to ε (the proof can be found in [1]), to Eq. (13)2. Combining this two inequalities
we are able to obtain a Carleman type estimate in the form∫ ∫

Q

β2
1

∣∣ϕε
∣∣2

dx dt +
∫ ∫

Q

β2
2

∣∣ρε
∣∣2

dx dt � Cε−2
∫∫

ω×(0,T )

β2
3 |ϕ|2 dx dt, (14)

for some appropriate weight functions βi := βi(x, t) (for i = 1,2,3) and some constant C = C(Ω,ω,‖a‖∞, T ) > 0.
Next, we get rid of the term ε−2 appearing in the right-hand side of (14). For that, we take a weight function β4 = β4(t)

satisfying |(β4)t(t)| � Cβ2(x, t) for all (x, t) ∈ Q and we show that∫ ∫

Q

β2
4

∣∣ρε
∣∣2

dx dt � Cε2
∫ ∫

Q

β2
2

∣∣ρε
∣∣2

dx dt. (15)

Inequality (15) is proved applying an energy inequality for the heat like equation satisfied by β4ρ
ε .

We combine (14) and (15) in order to get
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∫ ∫

Q

β2
4

∣∣ρε
∣∣2

dx dt � C

∫∫

ω×(0,T )

β2
3

∣∣ϕε
∣∣2

dx dt. (16)

Using (16) and a Carleman estimate to (13)1 we show that∫ ∫

Q

β2
5

∣∣ϕε
∣∣2

dx dt � C

∫∫

ω×(0,T )

β2
3

∣∣ϕε
∣∣2

dx dt, (17)

for some appropriate weight function β5 := β5(x, t).
Putting (16) and (17) together, we obtain∫ ∫

Q

β2
5

∣∣ϕε
∣∣2

dx dt +
∫ ∫

Q

β2
4

∣∣ρε
∣∣2

dx dt � C

∫∫

ω×(0,T )

β2
3 |ϕ|2 dx dt. (18)

Using (18) and energy estimates, it is not difficult to show that

∥∥ϕε(0)
∥∥2

L2(Ω)
+ ε

∥∥ρε(0)
∥∥2

L2(Ω)
� C

∫∫

ω×(0,T )

β3
∣∣ϕε

∣∣2
dx dt, (19)

for some constant C = C(Ω,ω,‖a‖∞, T ) > 0 and it follows from the definition of ρε that

∥∥ϕε(0)
∥∥2

L2(Ω)
+ ε

∥∥ϕε
e (0)

∥∥2
L2(Ω)

� C

∫∫

ω×(0,T )

∣∣ϕε
∣∣2

dx dt, (20)

which is the observability inequality (12) in the case where we have smooth solutions.
From the density of smooth solutions in the space where the solutions of (11) live, we conclude that the observability

inequality is satisfied by all solutions of (11). This concludes the proof of Theorem 1.
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