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We prove a persistence result for noncompact normally hyperbolic invariant manifolds
in Riemannian manifolds of bounded geometry. The bounded geometry of the ambient
manifold is a crucial assumption in order to control the uniformity of all estimates
throughout the proof.
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r é s u m é

Nous démontrons un résultat de persistance pour les variétés invariantes normalement
hyperboliques non-compactes dans une variété riemannienne de géométrie bornée. Il est
crucial d’assumer que la variété ambiante est de géométrie bornée pour contrôler
l’uniformité des estimations tout au long de la preuve.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Normally hyperbolic invariant manifolds (NHIMs for short) are used in many areas of dynamical systems, for example, in
singular perturbation theory. It is well known that compact NHIMs are persistent under any C1-small perturbation, see [4,6],
while Sakamoto [7] and Bates, Lu, and Zeng [1] have extended this to noncompact NHIMs in Euclidean and Banach spaces
respectively. Our result is an extension to a general noncompact setting in Riemannian manifolds. Bounded geometry is a
crucial additional ingredient, needed to formulate the necessary uniformity conditions which allow to replace compactness
by uniformity throughout the proof. Bounded geometry can be viewed as a uniformity condition on the ambient manifold
and is automatically satisfied for Euclidean space.

2. Bounded geometry

We follow Eichhorn [2] to define bounded geometry. Recall that the injectivity radius rinj(x) at a point x ∈ Q is the
maximum radius for which the exponential map at x is a diffeomorphism, and that normal coordinates are defined as the
inverse map.
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Definition 2.1. We say that a complete, finite-dimensional Riemannian manifold (Q , g) has k-th order bounded geometry
when

(i) the global injectivity radius rinj(Q ) = infx∈Q rinj(x) is positive, rinj(Q ) > 0;
(ii) the Riemannian curvature R and its covariant derivatives up to k-th order are uniformly bounded,

∀0 � i � k: sup
x∈Q

∥∥∇ i R(x)
∥∥ < ∞,

with operator norm of ∇ i R(x) viewed as a multilinear map on Tx Q .

Note that both Euclidean space and compact smooth Riemannian manifolds have bounded geometry of any order k, i.e.
k = ∞. Less trivial examples of bounded geometry are symmetric spaces or spaces constructed as products or as compactly
glued connected sums of bounded geometry spaces.

It follows from Theorem 2.4 in [2] that a manifold of bounded geometry has an atlas of normal coordinate charts such
that for some fixed δ > 0 there is a normal coordinate chart defined on each ball B(x; δ), and moreover, the representation
of the metric g in each chart is Ck-bounded, uniformly over all charts. We shall work with this preferred atlas and measure
the Ck norm of functions in the following way:

Definition 2.2. Let X , Y be Riemannian manifolds of k + 1-bounded geometry and f ∈ Ck(X; Y ). We say that f is of class
Ck

b when there exist δX , δY > 0 such that for each x ∈ X we have f (B(x; δX)) ⊂ B( f (x); δY ) and the representation

f̃ x = exp−1
f (x) ◦ f ◦ expx : B(0; δX) ⊂ Tx X → Ty Y (1)

in normal coordinates is of class Ck
b (i.e. Ck-bounded), and moreover, the associated Ck-norms of f̃ x are bounded uniformly

in x ∈ X .

This is a natural definition: k + 1-bounded geometry implies that coordinate transition maps are uniformly Ck-bounded,
hence this definition is equivalent to measuring the Ck-norm of f at x in any normal coordinate chart B(x′; δX) containing x.
Classes Ck

b,u(X; Y ) and Ck,α
b,u (X; Y ) of uniformly (Hölder) continuous functions can be defined analogously when X, Y are of

k + 2-bounded geometry. These ideas can also be extended to classes Ck,α
b and Ck,α

b,u of vector fields and submanifolds. We
shall allow submanifolds to be non-injectively immersed.

3. Results

We use the following definition of normal hyperbolicity. The flow is assumed complete for simplicity.

Definition 3.1. Let (Q , g) be a smooth Riemannian manifold, Φt ∈ Cr�1 a flow on Q , and let M ∈ Cr�1 be a submanifold
of Q . Then M is called a normally hyperbolic invariant manifold of the dynamical system (R, Q ,Φ) if all of the following
conditions hold true:

(i) M is invariant, i.e. ∀t ∈ R:Φt(M) = M;
(ii) there exists a continuous splitting

TM Q = TM ⊕ E+ ⊕ E− (2)

of the tangent bundle TQ over M with globally bounded, continuous projections πM , π+ , π− and this splitting is
invariant under the linearized flow DΦt = DΦt

M ⊕ DΦt+ ⊕ DΦt−;
(iii) there exist real numbers ρ− < −ρM � 0 � ρM < ρ+ and CM, C+, C− > 0 such that the following exponential growth

conditions hold on the various subbundles:

∀t ∈R, (m, x) ∈ TM:
∥∥DΦt

M(m)x
∥∥ � CMeρM |t|‖x‖,

∀t � 0, (m, x) ∈ E+:
∥∥DΦt+(m)x

∥∥ � C+eρ+t‖x‖,
∀t � 0, (m, x) ∈ E−:

∥∥DΦt−(m)x
∥∥ � C−eρ−t‖x‖. (3)

This definition corresponds to ‘eventual absolute normal hyperbolicity’ in [6], and is slightly more restrictive than the
‘relative normal hyperbolicity’ definition in [6] that is also used in [4]. We say that M is an r-NHIM if the more general
spectral gap condition

ρ− < −rρM � 0 � rρM < ρ+ with r � 1 (4)

on the growth exponents above is satisfied.
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Theorem 3.2. Let k � 2, α ∈ [0,1] and r = k + α. Let (Q , g) be a smooth Riemannian manifold of bounded geometry and v ∈ Ck,α
b,u

a vector field on Q . Let M ∈ Ck,α
b,u be a connected, complete submanifold of Q that is r-normally hyperbolic for the flow defined by v,

with empty unstable bundle, i.e. rank(E+) = 0.
Then for each sufficiently small η > 0 there exists a δ > 0 such that for any vector field ṽ ∈ Ck,α

b,u with ‖ṽ − v‖1 < δ, there is a unique

submanifold M̃ in the η-neighborhood of M, such that M̃ is diffeomorphic to M and invariant under the flow defined by ṽ. Moreover,
M̃ is Ck,α

b,u and the distance between M̃ and M can be made arbitrarily small in Ck−1-norm by choosing ‖ṽ − v‖k−1 sufficiently small.

Let us make some remarks on this result.

(i) The spectral gap condition (4) of r-normal hyperbolicity is essential to the proof. The Ck,α smoothness result is optimal.
The minimum smoothness requirement k � 2 is a stronger assumption than k � 1 in the well-known compact case. This
seems to be intrinsic to the noncompact case, cf. Hypothesis H2 in [1]. If the spectral gap condition only holds for some
1 � r < 2, then we can still obtain a perturbed manifold M̃ , but this manifold will generally not have better than Cr

smoothness.
(ii) It should be possible to improve this result by lifting some of the technical restrictions. First of all, an unstable bundle

E+ can be added for full normal hyperbolicity. It should hold that the persistent manifold M̃ is an r-NHIM again.
(iii) Definition 3.1 could be relaxed to the more general definition of ‘relative normal hyperbolicity’ as used in [4,6,1]. This

would require using the graph transform method; our Perron method proof seems tied to the current definition.
(iv) We only obtain a Ck−1-norm estimate for the perturbation distance of M̃ away from M , even though M̃ ∈ Ck,α is

preserved. It should be possible to improve this to the perturbation being Ck,α-small when ‖ṽ − v‖k,α is small.

By standard phase space extension techniques, we obtain the following results as a corollary:

Corollary 3.3. Assume the setting of Theorem 3.2. If the vector field ṽ also depends on time, i.e. ṽ ∈ Ck,α
b,u (R× Q ), then there still exists

a persistent manifold M̃ ∈ Ck,α
b,u , although it may be time-dependent. Similarly, if the vector field ṽ depends on an external parameter

p ∈ Rn and M is an r-NHIM for p = 0, then there exists a neighborhood U � 0 such that for each p ∈ U we have a unique persistent
manifold M̃ p ∈ Ck,α

b,u and M̃ p depends Ck,α on p.

4. Idea of the proof of Theorem 3.2

The following is only a rough sketch of the proof of Theorem 3.2, for a detailed exposition see [3].
We first reduce the problem to a trivial bundle X × Y where X is constructed as a manifold of bounded geometry of

sufficiently high order (say k +10) that approximates M . Then we embed the normal bundle N of X into X × Y with Y = R
n

for some n. A uniform tubular neighborhood of M can be modeled on N since M is the graph of a small function h : X → Y .
Additional normally hyperbolic dynamics can be added in the directions of Y complementary to N .

We apply a generalization of the Perron method based on ideas in [5]. Let ṽ X and ṽ Y (x, y) = A(x)y + f (x, y) denote the
horizontal and vertical parts of the vector field ṽ respectively. If (x(t), y(t)) is a curve in X × Y with y(t) uniformly small,
then we denote by Φy(t, t0, x0) the flow of ṽ X( · , y(t)) and by Ψx(t, t0) the linear flow of A(x(t)) on Y . A contraction map
T is defined by T (y, x0) = T Y (T X(y, x0), y) with

T X(y, x0)(t) = Φy(t,0, x0),

T Y (x, y)(t) =
t∫

−∞
Ψx(t, τ ) f

(
x(τ ), y(τ )

)
dτ (5)

mappings into appropriate spaces of curves in X , Y respectively. We finally recover the persistent manifold M̃ as the graph
of the map h̃ : x0 → Θ(x0)(0) where Θ denotes the fixed point of T as a function of the parameter x0 ∈ X ; the curve Θ(x0)

in Y is then evaluated at t = 0.
The Ck,α

b,u smoothness of Θ is proven inductively using ideas in [8] and the fiber contraction theorem. We introduce
certain formal tangent bundles to work around the problem that the spaces of curves in X , Y are not (Banach) manifolds.
We relate holonomy along closed loops in X to the curvature (which is bounded) to prove uniform continuity of the formal
derivatives of T . Restricting the spaces of curves in X , Y to bounded time intervals turns these into Banach manifolds; this
we use to finally recover true derivatives that lead to M̃ ∈ Ck,α

b,u .
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