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Let D ⊆ E denote an extension of commutative rings with identity, I be a nonzero proper
ideal of D , Γ mean a nonzero torsion-free additive grading monoid with Γ ∩−Γ = {0} and
Γ ∗ = Γ \ {0}. Let E[Γ ] be the semigroup ring of Γ over E , D + E[Γ ∗] = { f ∈ E[Γ ] | f (0) ∈
D} and D + I[Γ ∗] = { f ∈ D[Γ ] | the coefficients of nonconstant terms of f belong to I}. In
this paper, we give some conditions for the rings (resp., domains) D + E[Γ ∗] and D + I[Γ ∗]
to be Noetherian (resp., to satisfy the ascending chain condition on principal ideals).

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient D ⊆ E une extension d’anneaux commutatifs unitaires, I un idéal non nul et propre
de D et Γ un monoïde commutatif simplifiable sans torsion non trivial tel que Γ ∩ −Γ =
{0} et Γ ∗ = Γ \ {0}. Soient E[Γ ] l’anneau semi-groupe de Γ sur E , D + E[Γ ∗] = { f ∈
E[Γ ] | f (0) ∈ D} et D + I[Γ ∗] = { f ∈ D[Γ ] | les coefficients des termes non-constants de
f appartiennent à I}. Dans cet article, nous donnons certaines conditions pour que les
anneaux (resp., domaines) D + E[Γ ∗] et D + I[Γ ∗] soient Noethériens (resp., satisfassent la
condition de chaîne ascendante sur les idéaux principaux).

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soient D ⊆ E une extension d’anneaux commutatifs unitaires, I un idéal non nul et propre de D et Γ un monoïde
commutatif simplifiable sans torsion non trivial tel que Γ ∩ −Γ = {0} et Γ ∗ = Γ \ {0}. Soient E[Γ ] l’anneau semi-groupe
de Γ sur E , D + E[Γ ∗] = { f ∈ E[Γ ] | f (0) ∈ D} et D + I[Γ ∗] = { f ∈ D[Γ ] | les coefficients des termes non-constants de f
appartiennent à I}. Dans cet article, nous donnons certaines conditions pour que les anneaux (resp., domaines) D + E[Γ ∗] et
D + I[Γ ∗] soient Noethériens (resp., satisfassent la condition de chaîne ascendante sur les idéaux principaux). Notamment,
nous montrons le résultat suivant :

(1) D + E[Γ ∗] (resp., D + I[Γ ∗]) est un anneau Noethérien si et seulement si D est un anneau Noethérien, E est un
D-module de type fini (resp., I = I2) et Γ est de type fini.

(2) Si D et E sont deux anneaux intègres, alors D + E[Γ ∗] satisfait la condition de la chaîne ascendante sur les idéaux
principaux si et seulement si

⋂
n�1 a1 · · ·an E = (0) pour toute suite (an) d’éléments non inversibles de D et Γ satisfait la

condition de la chaîne ascendante sur les idéaux principaux. De plus, si D satisfait la condition de la chaîne ascendante
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sur les idéaux principaux et Γ satisfait la condition de la chaîne ascendante sur les idéaux principaux, alors D + I[Γ ∗]
satisfait la condition de la chaîne ascendante sur les idéaux principaux.

1. Introduction

Throughout this paper, D ⊆ E denotes an extension of commutative rings with identity, I is a nonzero proper ideal
of D , X is an indeterminate over E , Γ means a nonzero torsion-free (additive) grading monoid with Γ ∩ −Γ = {0}, and
Γ ∗ = Γ \ {0}, E[Γ ] is the semigroup ring of Γ over E , D + E[Γ ∗] = { f ∈ E[Γ ] | f (0) ∈ D}, and D + I[Γ ∗] = { f ∈ D[Γ ] | the
coefficients of nonconstant terms of f belong to I}.

Finiteness conditions have for many years been important tools in commutative algebra and algebraic geometry because
of their use in producing many theorems and applications. For example, a relation between the ascending chain conditions
on ideals and finitely generatedness of ideals in rings permits an interesting measure of the size and behavior of such rings,
and the Noetherian condition plays a significant role to prove many results on varieties, homology and cohomology.

In [8, Proposition 2.1], Hizem showed that D + X E[X] is a Noetherian ring if and only if D is a Noetherian ring and E is
a finitely generated D-module, and in [4, Proposition 1.2], Dumitrescu et al. showed that D + X E[X] satisfies the ascending
chain condition on principal ideals if and only if

⋂
n�1 f1 · · · fn E = (0) for each infinite sequence ( fn)n�1 consisting of

(nonzero) nonunits of D . In [3, Propositions 5.6 and 5.7], D’Anna et al. generalized Hizem’s result and proved that (1) if A
and B are commutative rings with unity, J is an ideal of B and f : A → B is a ring homomorphism, then the amalgamated
algebra A �� f J := {(a, f (a) + j) | a ∈ A and j ∈ J } is a Noetherian ring if and only if A and f (A) + J are Noetherian rings;
and (2) if J is a finitely generated A-module, then A �� f J is Noetherian if and only if A is Noetherian.

In this article, we study some finite conditions on special kinds of pullbacks which are the so-called D + E[Γ ∗] and D +
I[Γ ∗] constructions. These composite semigroup rings are also nice examples of (Γ -)graded rings and D + M constructions.
In particular, if Γ is the set of nonnegative integers, then D + E[Γ ∗] = D + X E[X] and D + I[Γ ∗] = D + X I[X]; so D +
E[Γ ∗] guarantees some algebraic properties of intermediate rings between polynomial rings D[X] and E[X], and D + I[Γ ∗]
provides us some information of polynomial rings which are contained in the usual polynomial ring D[X]. The main purpose
is to show the following:

(1) D + E[Γ ∗] (resp., D + I[Γ ∗]) is a Noetherian ring if and only if D is a Noetherian ring, E is a finitely generated D-module
(resp., I = I2) and Γ is finitely generated.

(2) For integral domains D and E , D + E[Γ ∗] (resp., D + I[Γ ∗]) satisfies the ascending chain condition on principal ideals
if and only if

⋂
n�1 a1 · · ·an E = (0) for each sequence (an) of nonunits of D and Γ satisfies the ascending chain con-

dition on principal ideals. Moreover, if D and Γ satisfy the ascending chain condition on principal ideals, then so does
D + I[Γ ∗].

2. When D + E[Γ ∗] and D + I[Γ ∗] are Noetherian rings

In this section, we give necessary and sufficient conditions for the rings D + E[Γ ∗] and D + I[Γ ∗] to be Noetherian rings.
Before starting, we review the concept of a finitely generated monoid. An additive monoid Γ is said to be finitely generated
if there exists a finite subset {α1, . . . ,αm} of Γ ∗ such that Γ = {∑m

i=1 niαi | ni is a nonnegative integer}. In this case, we
denote Γ = 〈α1, . . . ,αm〉.

Our first result is an equivalent condition for the ring D + E[Γ ∗] to be Noetherian.

Theorem 2.1. D + E[Γ ∗] is a Noetherian ring if and only if D is a Noetherian ring, E is a finitely generated D-module and Γ is finitely
generated.

Proof. (⇒) Assume that D + E[Γ ∗] is a Noetherian ring. Then D ∼= D + E[Γ ∗]/E[Γ ∗] is a Noetherian ring. Let α ∈ Γ ∗ .
Then Xα E[Γ ] is a finitely generated ideal of D + E[Γ ∗]; so Xα E[Γ ] = (g1, . . . , gn), where each gi ∈ D + E[Γ ∗]. Since
gi ∈ Xα E[Γ ], gi = Xα f i for some f i ∈ E[Γ ]. Therefore Xα E[Γ ] = Xα f1(D + E[Γ ∗]) + · · · + Xα fn(D + E[Γ ∗]), and hence
E = f1(0)D + · · · + fn(0)D , which indicates that E is a finitely generated D-module.

Finally, we prove that Γ is finitely generated. Note that since Γ is a torsion-free grading monoid with Γ ∩−Γ = {0}, we
may assume that 0 � α for all α ∈ Γ , where � is a total order of Γ compatible with its operation [7, Corollary 3.4]. Suppose
to the contrary that Γ is not finitely generated and choose α1 ∈ Γ ∗ . Then Γ = 〈α1〉. We first claim that Γ ∗ = α1 + Γ .
Suppose that Γ ∗ = α1 +Γ . Then α1 is the smallest element in Γ ∗ . If there is a γ ∈ Γ ∗ such that γ > nα1 for all n � 1, then
{γ − nα1}n�1 is an infinite strictly decreasing sequence in Γ ∗; so {Xγ −nα1 (D + E[Γ ∗])}n�1 is an infinite strictly ascending
chain of ideals of D + E[Γ ∗], which contradicts the fact that D + E[Γ ∗] is Noetherian. Hence for any γ ∈ Γ ∗ , γ � nα1 for
some n � 1. Let β ∈ Γ ∗ with α1 < β � 2α1. Since β = α1 + γ1 for some γ1 ∈ Γ ∗ , we have 0 < γ1 � α1. By the minimality
of α1, γ1 = α1; so β = 2α1. Assume that there are no members in Γ ∗ properly between nα1 and (n + 1)α1 for n � 1. If
β ′ ∈ Γ ∗ with (n + 1)α1 < β ′ � (n + 2)α1, then β ′ = α1 + γ ′ for some γ ′ ∈ Γ ∗; so nα1 < γ ′ � (n + 1)α1. By the induction
hypothesis, γ ′ = (n + 1)α1; hence we have β ′ = (n + 2)α1. This shows that there are no elements in Γ ∗ properly between
nα1 and (n + 1)α1 for all n � 1. Hence Γ = 〈α1〉, which is a contradiction. Therefore α1 + Γ � Γ ∗ , and hence we can
take α2 ∈ Γ ∗ \ α1 + Γ . Suppose that we have α1, . . . ,αn+1 ∈ Γ ∗ so that αn+1 ∈ Γ ∗ \ ⋃n

i=1 αi + Γ , where n � 1. Note that
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Γ = 〈α1, . . . ,αn+1〉. Next, we claim that Γ ∗ = ⋃n+1
i=1 αi + Γ . Otherwise, let δ ∈ Γ ∗ \ 〈α1, . . . ,αn+1〉. Then δ ∈ αi + Γ for

some i; so δ = αi + γ1 for some γ1 ∈ Γ . Since δ /∈ 〈α1, . . . ,αn+1〉, γ1 ∈ Γ ∗ . Assume that δ = ασ(1) + · · · + ασ(k) + γk , where
k � 1, γk ∈ Γ ∗ and σ : N → {1, . . . ,n + 1} is a map. Now, γk = ασ(k+1) + γk+1 for some γk+1 ∈ Γ . Since δ /∈ 〈α1, . . . ,αn+1〉,
γk+1 ∈ Γ ∗ . Hence for all n � 1, there exists a γn ∈ Γ ∗ such that δ = ασ(1) + · · · + ασ(n) + γn . Note that (γn)n�1 is an infinite
strictly decreasing sequence in Γ ∗; so {Xγn (D + E[Γ ∗])}n�1 is an infinite ascending chain of ideals of D + E[Γ ∗]. However
this is impossible. Therefore

⋃n+1
i=1 αi + Γ � Γ ∗ , and thus we can take αn+2 ∈ Γ ∗ \ ⋃n+1

i=1 αi + Γ . Now, we obtain an infinite
strictly ascending chain {〈α1, . . . ,αn〉}n�1 of submonoids of Γ . Hence {(Xα1 , . . . , Xαn )(D + E[Γ ∗])}n�1 is an infinite strictly
ascending chain of ideals of D + E[Γ ∗], which is absurd. Thus Γ is finitely generated.

(⇐) Consider the pullback diagram D + E[Γ ∗] given by

D + E[Γ ∗] D

u

E[Γ ] E = E[Γ ]/E[Γ ∗].
Since D is a Noetherian ring and E is a finitely generated D-module, u is finite [1, p. 30] and E is a Noetherian D-module.
Hence E is a Noetherian ring. Note that E[Γ ] is a Noetherian ring [7, Theorem 7.7]. Thus D + E[Γ ∗] is a Noetherian ring [5,
Proposition 1.7]. �

Applying Theorem 2.1 to the case when or Γ is a finite product of copies of N0, we can recover

Corollary 2.2. (cf. [8, Proposition 2.1]) D + (X1, . . . , Xn)E[X1, . . . , Xn] is a Noetherian ring if and only if D is a Noetherian ring and E
is a finitely generated D-module.

Recall that a domain R is a Dedekind domain if every nonzero ideal of R is invertible. It is well known that R is a
Dedekind domain if and only if R is a Noetherian Prüfer domain.

Corollary 2.3. Let D ⊆ E be an extension of integral domains and K be the quotient field of D. Then the following are equivalent.

(1) D + E[Γ ∗] is a principal ideal domain.
(2) D + E[Γ ∗] is a Dedekind domain.
(3) D = E = K and Γ is isomorphic to N0 , i.e., D + E[Γ ∗] = K [X].

Proof. (3) ⇒ (1) ⇒ (2) Clear.
(2) ⇒ (3) If D + E[Γ ∗] is a Dedekind domain, then D + E[Γ ∗] is a Prüfer domain; so E = K and Γ is a Prüfer submonoid

of Q [9, Theorem 2.4]. Since D + E[Γ ∗] is Noetherian, by Theorem 2.1, K is a finitely generated D-module; so K = a1
c D +

· · · + an
c D for some 0 = c,a1, . . . ,an ∈ D . Hence K = cK = a1 D + · · · + an D ⊆ D , and thus D = K . Since Γ is a Prüfer

submonoid of Q, Γ = ⋃〈βi〉 for some ascending chain {〈βi〉} of cyclic submonoids of Γ . Since Γ is finitely generated, its
generators should be contained in some 〈β j〉. Thus Γ = 〈β j〉. �

For a nonzero ideal I of D , we give an equivalent condition for the ring D + I[Γ ∗] to be Noetherian. Gilmer proved that
for a commutative ring R and a nonzero ideal I of R , R + I[{Xλ}λ∈Λ] is Noetherian if and only if Λ is finite, R is Noetherian,
and I is idempotent [6, Theorem 1]. Using the proofs in [6, Theorem 1] and Theorem 2.1, we can easily prove the following
and give the proof to make the paper self-contained.

Theorem 2.4. Let I be a nonzero ideal of D. Then D + I[Γ ∗] is a Noetherian ring if and only if D is a Noetherian ring, I2 = I and Γ is
finitely generated.

Proof. (⇒) Suppose that D + I[Γ ∗] is a Noetherian ring. Then D ∼= (D + I[Γ ∗])/I[Γ ∗] is a Noetherian ring. Also, a simple
modification of the proof of Theorem 2.1 shows that Γ is finitely generated. Let 0 = a ∈ I and α ∈ Γ ∗ . Consider the ideal
(aXα,aX2α, . . .) of D + I[Γ ∗]. Since D + I[Γ ∗] is Noetherian, aX (m+1)α ∈ (aXα, . . . ,aXmα) for some positive integer m; so
we have aX (m+1)α = ∑m

i=1 siaXiα for some si ∈ D + I[Γ ∗]. Comparing the coefficients of X (m+1)α from each side of this
equality, we conclude a = ba for some b ∈ I . Hence I ⊆ I2, and thus I = I2.

(⇐) Suppose that D is a Noetherian ring, I2 = I and Γ is finitely generated. Then I is principal and is generated by an
idempotent element a [6, Lemma 1]. Then D ∼= I ⊕ J , where J = {x − ax | x ∈ D} is an ideal of D . Since D is Noetherian,
I ∼= D/ J and J ∼= D/I are Noetherian rings, and I is a ring with identity a. Since Γ = 〈α1, . . . ,αm〉, I[Γ ] = I[Xα1 , . . . , Xαm ]
is an ideal of D[Xα1 , . . . , Xαm ] which is Noetherian [7, Theorem 7.7]. Hence D + I[Γ ∗] = J ⊕ I[Γ ] is a Noetherian ring. �
Remark 2.5. If D + I[Γ ∗] is an integral domain, then 0 and 1 are the only idempotent elements of D + I[Γ ∗]; so if D + I[Γ ∗]
is a Noetherian domain, then we have either I = (0) or I = D by the proof of Theorem 2.4. Thus, if I is a nonzero proper
ideal of an integral domain D , then D + I[Γ ∗] is never a Noetherian domain.
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3. Ascending chain conditions on principal ideals in the domains D + E[Γ ∗] and D + I[Γ ∗]

In this section, we give equivalent conditions for the domains D + E[Γ ∗] and D + I[Γ ∗] to satisfy the ascending chain
condition on principal ideals, where D ⊆ E is an extension of integral domains. We say that an integral domain R satisfies
the ascending chain condition on principal ideals (ACCP) if there does not exist an infinite strictly ascending chain of principal
ideals of R . It was shown that R satisfies ACCP if and only if

⋂
n�1 a1 · · ·an R = (0) for each infinite sequence (an)n�1 of

nonunits of R [4, Remark 1.1]. As a semigroup version, we say that a monoid Γ satisfies the ascending chain condition on
principal ideals (ACCP) if there does not exist an infinite strictly ascending chain of principal ideals of Γ . For an α ∈ Γ , α+Γ

denotes a principal ideal of Γ generated by α.

Lemma 3.1. Γ satisfies ACCP if and only if
⋂

n�1(α1 + · · · + αn + Γ ) = ∅, where αi ∈ Γ ∗ .

Proof. (⇒) Let β ∈ ⋂
n�1(α1 + · · · + αn + Γ ). Then for each n � 1, β = α1 + · · · + αn + βn, where βn ∈ Γ. We claim that

β1 + Γ � β2 + Γ � β3 + Γ � · · · is an infinite strictly ascending chain of principal ideals of Γ . Since Γ is cancellative,
βn = αn+1 + βn+1, so β1 + Γ ⊆ β2 + Γ ⊆ β3 + Γ ⊆ · · · . If βn+1 ∈ βn + Γ , then βn+1 = βn + γn for some γn ∈ Γ . Hence
βn = αn+1 + βn+1 = αn+1 + βn + γn; so αn+1 + γn = 0, i.e., αn+1 is invertible. This is a contradiction to that Γ ∩ −Γ = {0}.

(⇐) Suppose that there exists an infinite strictly ascending chain α1 + Γ � α2 + Γ � α3 + Γ � · · · of principal ideals
of Γ . Then for each n � 1, there exists a γn ∈ Γ ∗ such that αn = αn+1 +γn . Since Γ is cancellative, α1 = γ1 +· · ·+γn +αn+1
for each n � 1. Hence α1 ∈ ⋂

n�1(γ1 + · · · + γn + Γ ), which contradicts the assumption. Thus Γ satisfies ACCP. �
Lemma 3.2. Let ( fn)n�1 be an infinite sequence of nonunits of D + E[Γ ∗] containing an infinite subsequence ( fnk ) of nonconstant
polynomials (i.e., fnk /∈ D). If Γ satisfies ACCP, then

⋂
n�1 f1 f2 · · · fn(D + E[Γ ∗]) = (0).

Proof. Without loss of generality, we may assume that fn /∈ D for all n � 1. For each fn , let αn denote the degree of fn .
Suppose that

⋂
n�1 f1 f2 · · · fn(D + E[Γ ∗]) = (0), and let 0 = g ∈ ⋂

n�1 f1 f2 · · · fn(D + E[Γ ∗]) be of degree β . Then β ∈
α1 + · · · + αn + Γ for each n � 1, and thus β ∈ ⋂

n�1(α1 + · · · + αn + Γ ). This is a contradiction to Lemma 3.1. �
Lemma 3.2 is not true without the assumption that Γ satisfies ACCP.

Example 3.3. Let Γ = Q�0 be the set of nonnegative rational numbers. Then Γ is a nonzero torsion-free additive grading

monoid which does not satisfy ACCP, because 1
p + Γ � 1

p2 + Γ � · · · , where p is a prime integer. Put fn = X
1

pn for n � 1.

Then X
1

p−1 ∈ ⋂
n�1 f1 · · · fn(D + E[Γ ∗]) for any extension D ⊆ E of domains.

We now give the main result in this section.

Theorem 3.4. D + E[Γ ∗] satisfies ACCP if and only if
⋂

n�1 a1 · · ·an E = (0) for each sequence (an) of nonunits of D and Γ satisfies
ACCP.

Proof. If D + E[Γ ∗] satisfies ACCP, then Γ satisfies ACCP, for if α1 + Γ � α2 + Γ � · · · is an infinite strictly ascending chain
of principal ideals of Γ , then (Xα1) � (Xα2) � · · · is also an infinite strictly ascending chain of principal ideals of D + E[Γ ∗],
which is impossible. Let ( fn)n�1 be an infinite sequence of nonunits of D + E[Γ ∗]. By Lemma 3.2, without loss of generality,
we may assume that fn ∈ D for each n. It then follows that

⋂
n�1

f1 · · · fn
(

D + E[Γ ∗]) =
⋂
n�1

f1 · · · fn D +
( ⋂

n�1

f1 · · · fn E

)[
Γ ∗]. (1)

Hence
⋂

n�1 f1 · · · fn(D + E[Γ ∗]) = (0) if and only if
⋂

n�1 f1 · · · fn E = (0). �
Remark 3.5. (1) The proof of Theorem 3.4 shows that if D + E[Γ ∗] satisfies ACCP, then so does D .

(2) In Theorem 3.4, E need not satisfy ACCP. For example, if D is a field, then D + X E[X] always satisfies ACCP
[2, Proposition 1.1].

Recall that a domain D is a generalized unique factorization domain if every nonzero nonunit of D is expressible as a finite
product of mutually coprime prime quanta. In [10, Theorem 1.6(2)], Lim showed that if the quotient group of Γ satisfies
the ascending chain condition on cyclic subgroups, then D + E[Γ ∗] is a generalized unique factorization domain if and only
if D = E , D is a generalized unique factorization domain and Γ is a weakly factorial GCD-semigroup. Now, we characterize
the unique factorization domain of the form D + E[Γ ∗].
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Corollary 3.6. D + E[Γ ∗] is a unique factorization domain if and only if D = E, D is a unique factorization domain and Γ is a unique
factorization semigroup satisfying the ascending chain condition on cyclic submonoids.

Proof. Before proving this, note that R is a unique factorization domain if and only if R is a GCD-domain satisfying ACCP.
(Recall that a domain R is a GCD-domain if any two elements in R have a greatest common divisor (equivalently, aR ∩ bR is
principal for all a,b ∈ R).)

(⇒) If D + E[Γ ∗] is a unique factorization domain, then D + E[Γ ∗] is a GCD-domain; so E = D S for some multiplicative
subset S of D [9, Theorem 2.5]. If D � E , then 1

s /∈ D for some s ∈ S; so
⋂

n�1 sn D S = (0) by Theorem 3.4. However 1 = sn

sn

for each n � 1; so 1 ∈ ⋂
n�1 sn D S . This is impossible, and hence D = E . Therefore D[Γ ] is a unique factorization domain,

and thus D is a unique factorization domain and Γ is a unique factorization semigroup satisfying the ascending chain
condition on cyclic submonoids [7, Theorem 14.7].

(⇐) This was shown in [7, Theorem 14.16]. �
A similar argument as in the proof of Theorem 3.4 also shows the following result:

Theorem 3.7. Let I be a nonzero proper ideal of a domain D. Then D + I[Γ ∗] satisfies ACCP if and only if D and Γ satisfy ACCP.

We end this article with an example which shows that the converse of Theorem 3.7 does not hold.

Example 3.8. (1) Let Z be the ring of integers, ( fn)n�1 be a sequence of nonzero nonunits in Z + (2Z)[Q0
∗] and let

0 = g ∈ ⋂
n�1 f1 · · · fn(Z + (2Z)[Q0

∗]). Let a and bn be the coefficients of initial terms in g and fn , respectively. Then for
each n � 1, a = b1 · · ·bnen for some en ∈ Z; so almost all bi should be ±1. Since fn is a nonunit, almost all f i should be
nonconstants. Let c and dn be the coefficients of the highest degree terms in g and fn , respectively. Then c has infinitely
many divisors d1,d2, . . . and almost all di are multiples of 2. This is impossible. Thus Z+ (2Z)[Q0

∗] satisfies ACCP.
(2) By Example 3.3, Q0 does not satisfy ACCP.
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