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It is shown that there is an absolute constant C such that any rational b
q ∈ ]0,1[, (b,q) = 1,

admits a representation as a finite sum b
q = ∑

α
bα
qα

where
∑

α

∑
i ai(

bα
qα

) < C log q and
{ai(x)} denotes the sequence of partial quotients of x.
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r é s u m é

On démontre l’existence d’une constante C telle que tout rationnel b
q ∈ ]0,1[, (b,q) = 1,

a une représentation comme somme finie b
q = ∑

α
bα
qα

où
∑

α

∑
i ai(

bα
qα

) < C log q et {ai(x)}
est la suite des quotients partiels de x.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Cette Note résulte de résultats récents sur la conjecture de Zaremba obtenus dans [1] et quelques questions posées
par R. Kenyon [4] sur la représentation de nombres rationnels comme somme de nombres rationnels dont les quotients
partiels sont bornés par une constante absolue. Diverses propriétés de représentation de nombres réels x comme somme
x = y + z + · · · , où y, z, . . . ont leurs quotients partiels sujets à certaines bomes, ont en effet été établies (voir en particulier
les résultats de M. Hall, [3]). Le problème de trouver des énoncés analogues pour les rationnels semble donc naturel. Dans
cet esprit, on exploite ici les méthodes de [1] afin d’établir la propriété suivante :

Proposition 1. Il existe une constante C telle que tout rationnel b
q ∈ ]0,1[, (b,q) = 1, admette une représentation comme somme finie

b
q = ∑

α
bα
qα

où
∑

α

∑
i ai(

bα
qα

) < C log q.

1. Some background

It was shown by M. Hall [3] that every number in the interval ]√2 − 1,4
√

2 − 4[ is the sum of two continued fractions
whose partial quotients do not exceed four (see [3], Theorem 3.1).

Recently, R. Kenyon brought to the author’s attention the problem of obtaining a result in the flavor of Hall’s theorem for
the rational numbers. There are several possible formulations. One could ask for instance if there is an absolute constant C
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such that given b
q ∈ Q+ ∩ I , I a suitable interval, there is a representation of b as a sum of at most C positive integers bi such

that each of the fractions bi
q has its partial quotients bounded by C . To be mentioned here is the (still unsolved) conjecture

of Zaremba, according to which for all q ∈ Z+ , there is some (b,q) = 1 such that b
q has partial quotients bounded by five

(or some absolute constant). Alternatively, one can ask if any element in Q+ ∩ I is sum of two (or at most C ) rationals with
partial quotients bounded by C . While we will leave these questions unanswered here, our aim is to prove the following
property in a similar spirit:

Proposition 1. There is an absolute constant C such that any rational b
q ∈ ]0,1[, (b,q) = 1, admits a representation as a finite sum

b

q
=

∑
α

±bα

qα
(bα,qα) = 1 (1)

such that

∑
α

∑
i

ai

(
bα

qα

)
� C log q (2)

where {ai(x)} denotes the sequence of partial quotients of x ∈ ]0,1[.

As R. Kenyon points out, a statement of this kind may be viewed as a measure of complexity of rationals of given height.
Note that since

∑
i ai(

bα
qα

) � log qα , above estimate is essentially optimal.

2. Preliminaries

Our main analytical tools are the results and methods of the recent paper [1] on Zaremba’s conjecture. It is shown in [1]
that for a large enough constant A (we may take A = 50), for all q ∈ Z+ outside an exceptional set E ⊂ Z+ of zero-density,
there is some b ∈ Z+ , (b,q) = 1 such that

b

q
∈ RA =

{
x ∈Q∩ [0,1]: max

i
ai(x) � A

}
. (3)

More quantitatively, one gets an estimate∣∣E ∩ [1, N]∣∣ < N1− c
log log N . (4)

Instead of (4), it is possible to obtain a power saving

Proposition 2. The above statement holds with E satisfying∣∣E ∩ [1, N]∣∣ < N1−c1 (5)

with c1 > 0 some constant.

Recalling the approach from [1], elements b
q ∈RA are produced from elements g = ( ∗ b

∗ q

)
in the semi-group GA generated

by the matrices(
0 1
1 a

)
(1 � a � A). (6)

We use the Hardy–Littlewood circle method in order to analyze exponential sums of the form∑
λ(g)e(g22θ) (7)

with λ a suitable distribution on GA . Fixing some large N , the distribution λ is obtained from a product of certain Archi-
median balls in GA . As usual, the circle method involves a treatment of minor and major arcs contributions and those
depend on different ingredients. The estimates on minor arcs result from Vinogradov-type bilinear estimates, exploiting the
multi-linear structure of λ. A precise evaluation of (7) on the major arcs (up to an error term) is possible using spectral
methods. We use the thermodynamical approach and the results from [2] based on the theory of expansion in SL2(q). The
error term in the counting and the size of the exceptional set in (4) depend on the width of the resonance free regions for

the congruence transfer operators. It turns out that the gain of the N− c
log log N -factor rather than N−c comes from introducing

balls B M = {g ∈ GA: ‖g‖ � M}. If instead of balls we consider slightly more general distributions (obtained as average of
balls over suitable radii), one may recover a full powergain N−c (the cutoff-level for the major arcs may then be set at Nc

for some c > 0, rather than N
c

log log N ).
In order to prove Proposition 1, we need one more further refinement.



J. Bourgain / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 727–730 729
Proposition 3. Taking again A sufficiently large, there is a constant c > 0 such that the following holds:
Let N ∈ Z+ be large enough, d ∈ Z+ , d < Nc and β ∈ Z, (β,d) = 1. There is a subset EN;d,β ⊂ Z∩ [1, N] such that

|EN,d,β | < N1−c (8)

and for all q ∈ Z+ \ EN;d,β , q < N, there is b ∈ Z+ , b < q, (b,q) = 1 satisfying

b

q
∈ RA (9)

and

b ≡ β (mod d). (10)

Returning to [1], the incorporation of the additional congruence condition (10) is harmless at the level of the minor arcs
estimates, provided d is sufficiently small. Of course the condition (10) enters the singular series in the treatment of the
major arcs and the assumption (β,d) = 1 ensures that there are no local obstructions.

Obviously Proposition 3 implies that for some constant c > 0, the following holds:

Proposition 3′ . There is a subset E N ⊂ Z∩ [1, N] such that

|EN | < N1−c (11)

and for all q ∈ Z+ \ EN ,q < N and all d ∈ Z+ , d < Nc, and β ∈ Z, (β,d) = 1, there is some b ∈ Z+ , (b,q) = 1 satisfying (9) and (10).

3. Proof of Proposition 1

Denote C( b
q ) the minimum of the left hand side of (2) over all representations (1). First, observe that it suffices to show

that

b

q
= b′

q′ + b′′

q′′ (12)

with

C

(
b′

q′

)
< C log q (13)

and

q′′ <
√

q (14)

with C in (13) some absolute constant. We may then indeed iterate.
Let c > 0 be the constant from Proposition 3′ . Set

δ = 1

10
c and r = [

δ−2] + 1. (15)

We claim that there are primes p1, . . . , pr , (pi,q) = 1, pi < qδ and pi ∼ qδ satisfying the following two conditions:

qp1 . . . pr /∈ Eq1+rδ with EN as in Proposition 3′. (16)

For all I ⊂ {1, . . . , r}, I �= φ,
∏
i∈I

pi /∈ Eqδ|I| . (17)

Indeed, consider all integers of the form qp1 . . . pr with pi as above.
Their number is at least

qrδ

(log q)r
. (18)

On the other hand, by (11)

|Eq1+rδ | < q(1+rδ)(1−c) � q1+rδ−cδ−1
< qrδ−1 = o

(
qrδ

r

)
.

(log q)



730 J. Bourgain / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 727–730
Next, consider condition (17) and fix I ⊂ {1, . . . , r}, I �= φ. Among the integers considered above, those for which
∏

i∈I pi ∈
Eq|I|δ account for at most

q(r−|I|)δ|Eqδ|I| | < qrδ−cδ = o

(
qrδ

(log q)r

)
.

Hence we may find p1, . . . , pr with the desired properties.
Returning to (12)–(14), write with p1, . . . , pr as above

b

q
= bp1 . . . pr

qp1 . . . pr
.

Since (b,q) = (pi,q) = 1, (bp1 . . . pr,q) = 1 with q < Nc , N = q1+rδ .
Since (16) holds, Proposition 3′ implies that there is some b0 ∈ Z+ , b0 < qp1 . . . pr such that b0

p1...prq ∈ RA and b0 ≡
bp1 . . . pr (mod q). Hence

C

(
b0

p1 . . . prq

)
< C(A) log(p1 . . . prq) � C(A)(1 + rδ) log q = C log q (19)

and we may write

b

q
= b0

qp1 . . . pr
+ a1∏

i∈I1
pi

with a1 ∈ Z and

(
a1,

∏
i∈I1

pi

)
= 1 if I1 �= φ. (20)

If
∏

i∈I1
pi <

√
q, set b′′

q′′ = a1∏
i∈I1

pi
in (12).

If
∏

i∈I1
pi �

√
q, use (17) and take d = pi1 , i1 chosen from I1, β = a1.

By definition of δ, pi1 < qδ < (q
1
2 )c and we get some b1 ≡ a1 (mod pi1 ) with b1∏

i∈I1
pi

∈RA . Thus

C

(
b1∏

i∈I1
pi

)
< C(A) log

( ∏
i∈I1

pi

)
< C log q (21)

and

a1∏
i∈I1

pi
= b1∏

i∈I1
pi

+ a2∏
i∈I2

pi
with I2 ⊂ I1 \ {i1},

(
a2,

∏
i∈I2

pi

)
= 1 if I2 �= φ. (22)

The continuation of the process is clear and it terminates after at most r steps, leading to a representation

b

q
= b0

qp1 . . . pr
+ b1∏

i∈I1
pi

+ · · · + bρ∏
i∈Iρ pi

+ b′′

q′′ = b′

q′ + b′′

q′′ (23)

satisfying (13), (14).
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