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r é s u m é

On donne la démonstration détaillée de Rossi (2012) [10, Théorème 3.3] ; après, on comm-
ente la nature de ce résultat and sa relation avec le groupe de Grothendieck–Teichmüller.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. The explicit proof of [10, Theorem 3.3] and some comments thereabout

We now proceed with the proof of [10, Theorem 3.3]; let us warn the reader that we rely on [10, Digressions A, B], to
which we refer frequently.

The identity on the left-hand side of [10, (2)] has been proved in [8, Section 8.3] by means of the compatibility between
cup products; a different proof has been presented in [3, Section 3.2]. We will adopt the strategy proposed in [3, Section 3.2],
to which we refer for more details, to prove the identity on the right-hand side.

Let us momentarily re-introduce the formal parameter h̄, and consider the corresponding h̄-formal Poisson bivector h̄π .
To g, we may attach two natural quadratic algebras, A and B = ∧(g∗): observe that, in the present framework, A is

concentrated in degree 0, while B is non-negatively graded. It is well known that A and B are Koszul algebras and are
Koszul dual to each other.

We consider then the (graded) algebras Ah̄ , Bh̄ over the ring K[[h̄]]. With the formal Poisson structure h̄π , we associate
the product �log,h̄ via the formality quasi-isomorphism U log.

On the other hand, we may consider the h̄-formal Fourier dual quadratic vector field h̄π̂ = h̄ f k
i jθiθ j∂θk , borrowing pre-

vious notation for the graded basis {θi} of B and f k
i j being the structure constants of g, on Bh̄ (h̄π̂ is the h̄-shifted

Chevalley–Eilenberg differential dh̄ on Bh̄). Thus, the triple (Bh̄,dh̄,∧) is a dg algebra over K[[h̄]]: the graded formality
quasi-isomorphism V in [5, Appendix A] admits a logarithmic version V log simply by replacing everywhere ω by ωlog, and
the MC element V log(h̄π̂ ) endows Bh̄ with the A∞-structure over K[[h̄]] given by ∧ + V log(h̄π̂ ). Degree arguments and the
fact that the logarithmic integral weight �

log
Γ associated to the graph Γ depicted in Fig. 1(i), is trivial yield that the only
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Fig. 1. (i) The unique admissible graph of type (2,0) and two directed edges; (ii) an admissible graph Γ of type (3,1,3) contributing to L1,log
A .

Fig. 1. (i) Le seul graphe admissible de type (2,0) avec deux arêts; (ii) un graph admissible Γ de type (3,1,3) contribuant à L1,log
A .

non-trivial Taylor components of the aforementioned A∞-structure are dh̄ and ∧, thus deformation quantization produces
out of the graded commutative algebra (B,∧) the h̄-shifted Chevalley–Eilenberg complex (Bh̄,dh̄,∧). The computation of
the said weight �

log
Γ has been performed in [2, Lemma 6.8]: it follows from [10, Theorem 3.2, Digression A].

We regard A and B as unital A∞-algebras: in [4, Section 6.2] a non-trivial A∞-A-B-bimodule structure on K = K

has been explicitly constructed, which restricts to the standard augmentation A- and B-module structure and such that
LA : A → EndB+ (K ) is an A∞-quasi-isomorphism. Observe that we may also consider A∞-algebras and A∞-bimodules over
the ring K [[h̄]], and all previous definitions and constructions apply to this setting as well. In particular, we may regard
(Ah̄, �log,h̄) and (Bh̄,dh̄,∧) as A∞-algebras over K[[h̄]].
Lemma 1.1. There exists an h̄-formal flat deformation Kh̄ = K[[h̄]] of the A∞-A-B-bimodule K as an A∞-(Ah̄, �log,h̄)-(Bh̄,dh̄,∧)-
bimodule.

Sketch of proof of Lemma 1.1. Let us consider the first quadrant Q +,+ in C, with which we associate the configuration
space C+

2,0,0 of two distinct points in Q +,+ modulo rescalings. We define on C+
2,0,0 the closed, complex-valued 1-form

ω+,−
log (z1, z2) = 1

2π i
d log

(
z1 − z2

z̄1 − z2

z̄1 + z2

z1 + z2

)
− 1

π i
d log

(∣∣∣∣ z̄1 + z2

z1 + z2

∣∣∣∣
)

. (1)

We denote by C̄+
2,0,0 the compactified version à la Fulton–MacPherson of C+

2,0,0, see [6, Section 3.1] for a complete
description thereof and of its boundary stratification. The 1-form (1) has the following properties:

(i) when both arguments of ω+,−
log approach R

+ , resp. iR+ , ω+,−
log = ω−

log, resp. ω+,−
log = ω+

log, where ω+
log = ωlog and ω−

log =
σ ∗(ωlog), σ being the involution of C+

2,0 given by (z1, z2) �→ (z2, z1);

(ii) ω+,−
log vanishes, when its initial, resp. final point, approaches iR+ , resp. R+ , or the origin;

(iii) ω+,−
log has a simple pole of order 1 along the boundary stratum S1 × C+

1,0,0 of C̄+
2,0,0 corresponding to the collapse of its

two arguments to a single point in Q +,+ , and the S1-piece of the corresponding regularization (see [2, Section 2.1.1]
or [10, Digression A]) equals the normalized volume form of S1. There is also a C+

1,0,0-piece in the regular part, whose
presence justifies the fact that the logarithmic counterpart of the formality result for two branes requires admissible
graphs with short loops, see also later on.

Properties (i)–(iii) can be checked by direct computations using local coordinates as in the proof of [4, Lemma 5.4], with
due modifications because of the pole.

The explicit formulæ for the A∞-bimodule structure dk,l
Kh̄

on Kh̄ can be obtained from the ones for the correspond-

ing A∞-structure on Kh̄ constructed in [4, Section 7] by replacing ω+,− by its logarithmic counterpart (1): also for later
computations, we frequently and implicitly refer to [4, Section 7].

The convergence of the logarithmic integral weights appearing in the A∞-bimodule structure, as well as the A∞-property
itself, will be shown in a forthcoming paper in their full generality: still, we refer to the arguments in [10, Digression A] for
a sketch of the proof of the convergence of the logarithmic integral weights (see also [2, Proposition 4.2]), while the L∞-
property follows by means of [10, Theorem 3.2, Digression A] (see [1, Theorem 1.8]), with some due modifications which
arise from the regular parts of the 4-colored logarithmic propagators involved.

Observe that, in view of the properties of (1), if we set h̄ = 0, we recover the A∞-A-B-bimodule structure on K
from [3]. �

In particular, [3, Proposition 2.4, Lemma 2.5 and Theorem 2.7] are valid in their full generality in the logarithmic frame-
work as well: thus, there is an algebra isomorphism

L1,log
Ah̄

: (Ah̄, �log,h̄) → T(g)/
(
T(g) ⊗ 〈

xi ⊗ x j − x j ⊗ xi − h̄[xi, x j]: i, i = 1, . . . ,d
〉 ⊗ T(g)

)[[h̄]] = (
Uh̄(g), ·

)
, (2)

where Uh̄(g) is the UEA of the h̄-shifted Lie algebra gh̄ = g, with Lie bracket h̄[•,•].
The algebra isomorphism (2) is a particular case of the logarithmic version of Shoikhet’s conjecture [11] about deforma-

tion quantization with generators and relations.
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Fig. 2. Graphical representation of the relation between weights of wheel-like graphs.
Fig. 2. Représentation graphique de la relation entre les poids des graphes de type roue.

By degree reasons we may set h̄ = 1 in (2), hence L1,log
A yields an algebra isomorphism from (A, �log) to (U(g), ·).

Lemma 1.2. The algebra isomorphism L1,log
A equals Ilog .

Sketch of the proof of Lemma 1.2. The quasi-isomorphism L1,log
A is explicitly given by the formula

L1,log
A (a1)

m(1,b1, . . . ,bm) = d1,m
K (a1,1,b1, . . . ,bm),

where one must think of d1,m
K as of d1,m

Kh̄
for h̄ = 1, and a1 in A, and bi in B , i = 1, . . . ,m.

Using the graphical definition of the deformed A∞-A-B-bimodule structure specified by the Taylor components dk,l
K in [4,

Sections 6.2, 7.1 and 7.2], we consider an admissible graph Γ of type (n,1,m) with n vertices of the first type (i.e. in Q +,+),
1 vertex of the second type on iR+ and m ordered vertices of the second type on R; Γ may have short loops at vertices
of the first type, no edge may depart from the vertex on iR+ and no edge may arrive at a vertex on R. From any vertex of
the first type depart exactly two directed edges, whence |E(Γ )| = 2n + m.

The multidifferential operator associated to an admissible graph Γ of type (n,1,m) as before is analogous to the one
appearing in the construction of [10, (1)]: bi in B , i = 1, . . . ,m, is regarded as a polyderivation with constant coefficients
on A, while a short loop corresponds to the divergence operator on Tpoly(X) w.r.t. the constant volume form on X .

The corresponding integral weight �
log,+,−
Γ is obtained by associating with an edge between two distinct vertices, resp.

a short loop at a vertex of the first type, the closed 1-form (1) on C+
2,0,0, resp. the exact 1-form d arg(•)/(4π) on C+

1,0,0: then

one integrates the corresponding closed form ω
log,+,−
Γ of degree 2n +m over C+

n,1.m . By means of the results sketched in [10,

Digression A], ω
log,+,−
Γ extends to a complex-valued, real analytic closed form of top degree on C̄+

n,1,m , whence �
log,+,−
Γ

converges.
The very same arguments of [3, Section 3.2] imply that a general admissible graph Γ of type (n,1,m) is the disjoint

union of wheel-like graphs with spokes pointing towards the unique vertex on iR+ and a graph with single edges starting
from ordered vertices on R and hitting the unique vertex on iR+ , as in Fig. 1(ii).

The behavior of (1) along the boundary strata of C̄+
2,0,0 implies that the multidifferential operators associated with

admissible graphs with no vertices of the first type contribute to the symmetrization isomorphism PBW from A to U(g),
see also [3, Section 4.2].

On the other hand, the wheel-like graphs sum up to yield exactly the invertible differential operator of infinite order
and with constant coefficients specified by jΓ (•) in Ŝ(g∗), once we have computed the logarithmic integral weights of the
wheel-like graphs. For this, we use the strategy adopted in [12, Appendix B], where we replace ω+,− by its logarithmic
counterpart ω+,−

log .
More precisely, the discussion in the first part of [10, Digression A] implies that [10, Theorem 3.2, Digression A], applies

to differential forms associated with a wheel-like graphs with n+1 vertices as before. The boundary conditions for ω+,−
log and

the regularization morphism imply the graphical relation among logarithmic integral weights depicted in Fig. 2 for n = 3.
Observe that we have adopted the lazy convention for the signs: however, signs behave exactly as in [12, Appendix B],
because the regularization morphism does not alter signs.

The second and third integral weights have to be understood w.r.t. the logarithmic propagator ωlog and on configuration
spaces C̄+

n+1,0 of distinct points in H
+ .

The integral weight of a wheel-like graph as in the third term has been computed explicitly in [9, Appendix A]; it remains
to prove that the integral weight of a wheel-like graph as in the second term vanishes. This is, in turn, a consequence of a
more general Vanishing Lemma for logarithmic integral weights.

Lemma 1.3. Let Γ be an admissible graph of type (n,m) with |E(Γ )| = 2n + m − 2, n � 2, admitting a vertex of the first type which
is the starting point of no edge.

Then, the corresponding logarithmic integral weight �
log
Γ vanishes.

Proof. We may safely assume, because of the standard dimensional argument, that the vertex v of the first type from which
no edge departs is the endpoint of l � 2 edges.

Observe first that ωlog depends holomorphically on its second argument. Further, since n � 2, we may e.g. fix to i the
coordinate corresponding to some vertex v1 �= v of the first type; let us denote by zv the coordinate corresponding to the
vertex v .
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Then, the differential form ω
log
Γ vanishes, because it depends only holomorphically on zv and there is no non-trivial form

of top degree on C̄+
n,m which is holomorphic in one complex coordinate. �

Lemma 1.3 obviously applies to a wheel-like graph as in the second term of Fig. 2, and, because of the previous compu-
tations, yields the claim of Lemma 1.2. �

Lemma 1.2 is proved, and this, in turn, yields the desired claim about the explicit expression for the algebra isomorphism
relating the logarithmic star product �log on A and the associative product on U(g).

1.1. Some final comments

As remarked before the proof of Lemma 1.3, the computation of the weights corresponding to the contributions coming
from wheel-like graphs is found in [9, Appendix A], whence we deduce both expressions [10, (3)] and [10, (4)] in the form
of exponentials of convergent power series, whose coefficients depend on ζ(•). Furthermore, it is well known that c1 is a
derivation of both � and �log on A. Therefore, by suitably changing the first coefficient, the invertible differential operators
in [10, (3)] and [10, (4)] are obtained (up to the coefficient of c1, which may be chosen freely) from the functions

√
j(z) =

√
1 − e−z

z
= exp

(
−1

4
z +

∑
n�1

ζ(2n)

(2n)(2π i)n
z2n

)
= exp

(
−1

4
z +

∑
n�1

B2n

(4n)(2n)! z2n
)

,

1

Γ (1 + z
2π i )

= exp

(
γ z +

∑
n�1

ζ(n)

n(2π i)n
zn

)
= √

j(z) exp

(∑
n�1

ζ(2n + 1)

(2n + 1)(2π i)2n+1
z2n+1

)
,

where γ denotes the Euler–Mascheroni constant, and Bn , n � 2, denotes the n-th Bernoulli number. Observe that the con-
stant γ appears mainly for aesthetical reasons.

Therefore, a bit improperly, we may use the reciprocal Γ -function with shifted argument to construct the isomorphism
Ilog: in fact, up to the term of first order (whose coefficient may be chosen freely because c1 is a derivation for both
products � and �log), the exponential of the power series in [10, (4)] coincides with the function first considered in [7,
Section 4.6] in a discussion about incarnations of the Grothendieck–Teichmüller (GRT for short) group. The very same
expression has been re-discovered in [9, Section 4.9] in the framework of exotic L∞-automorphisms of Tpoly(X) and their
connection with the GRT group.

As an immediate corollary of [10, Theorem 3.3], for a Lie algebra g as in Section 1, the star products in [10, (1)] on A
are equivalent w.r.t. the invertible differential operator with constant coefficients and of infinite order associated with the
element of Ŝ(g) given by

exp

(∑
n�1

ζ(2n + 1)

(2n + 1)(2π i)2n+1
c2n+1(x)

)
, x ∈ g.

Let us remark that a more conceptual approach to the Lie algebra grt of the GRT group in the framework of deformation
quantization can be found in the fundamental paper [13], in particular in [13, Sections 7.4, 7.5], where modifications of the
Duflo element via elements of grt have been discussed in details.
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