Algebraic Geometry

Hodge structures and Weierstrass σ-function

Structures de Hodge et fonction σ de Weierstrass

Grzegorz Banaszak ${ }^{\text {a,1 }}$, Jan Milewski ${ }^{\text {b,2 }}$
${ }^{\text {a }}$ Department of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznań, Poland
${ }^{\mathrm{b}}$ Institute of Mathematics, Poznań University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland

ARTICLE INFO

Article history:

Received 30 July 2012
Accepted after revision 18 September 2012
Available online 1 October 2012
Presented by Christophe Soulé

Abstract

In this Note we introduce new definition of Hodge structures and show that \mathbb{R}-Hodge structures are determined by \mathbb{R}-linear operators that are annihilated by the Weierstrass σ-function. © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Dans cette Note, nous introduisons une nouvelle définition des structures de Hodge et démontrons que les structures de Hodge sur \mathbb{R} sont déterminées par des transformations \mathbb{R}-linéaires qui sont des zéros de la fonction σ de Weierstrass. © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Classically a real Hodge structure of a given weight can be defined in four equivalent ways as follows (see e.g. [2,5]):
Definition 1.1. A real Hodge structure of a weight n consists of a finite-dimensional \mathbb{R}-vector space $V=V_{\mathbb{R}}$ together with any of the following equivalent data:
(i) A decomposition $V_{\mathbb{C}}=\bigoplus_{p+q=n} V^{p, q}$, called the Hodge decomposition, such that $\overline{V^{p, q}}=V^{q, p}$, where $V_{\mathbb{C}}:=V \otimes_{\mathbb{R}} \mathbb{C}$.
(ii) A decreasing filtration $F_{H}^{r} V_{\mathbb{C}}$ of $V_{\mathbb{C}}$, called the Hodge filtration, such that $F_{H}^{r} V_{\mathbb{C}} \oplus \overline{F_{H}^{n-r+1} V_{\mathbb{C}}}=V_{\mathbb{C}}$.
(iii) A homomorphism $h_{n}: \mathbb{S} \rightarrow \mathrm{GL}\left(V_{\mathbb{R}}\right)$ of real algebraic groups, and also specifying that the weight of the Hodge structure is n, where $\mathbb{S}:=R_{\mathbb{C} / \mathbb{R}} \mathbb{G}_{m}$.
(iv) A homomorphism $h_{n}: \mathbb{S} \rightarrow \mathrm{GL}\left(V_{\mathbb{R}}\right)$ of real algebraic groups such that via the composition $\mathbb{G}_{m} / \mathbb{R} \rightarrow \mathbb{S} \rightarrow \mathrm{GL}\left(V_{\mathbb{R}}\right)$ an element $t \in \mathbb{G}_{m} / \mathbb{R}$ acts as $t^{-n} \cdot I d$.

Throughout the paper we work with Hodge structures of various weights, hence by a Hodge structure we understand here a finite direct sum

[^0]\[

$$
\begin{equation*}
\rho:=\bigoplus_{j=1}^{k} h_{n_{j}} \tag{1}
\end{equation*}
$$

\]

of representations $h_{n_{j}}$ described in (iii) or (iv) of Definition 1.1.
In this paper we consider Hodge structures on real vector space V via representations of the Lie algebra of the real algebraic group \mathbb{S} (denoted also \mathbb{C}^{\times}) on V. In Section 2 we show that a Hodge structure can be treated as a pair of operators E, T on V satisfying certain conditions (see Theorem 2.1). In Section 3 we show that a Hodge structure can be treated as a single operator $S:=E+T$ on V such that $\sigma(S)=0$ for a Weierstrass σ-function which corresponds to decomposition of V into eigenspaces of the operators E and T. Weierstrass σ-function does not have multiple zeros and this corresponds to the fact that the complexification of S does not have generalized eigenvectors other than ordinary ones.

2. Hodge structures and Lie algebras

The following theorem gives another definition of the Hodge structure.

Theorem 2.1. Let V be a finite-dimensional vector space over \mathbb{R}. There is a one-to-one correspondence between the family of Hodge structures on V and the family of pairs of endomorphisms $E, T \in \operatorname{End}_{\mathbb{R}}(V)$ satisfying the following conditions:

$$
\begin{align*}
& {[E, T]=0, \quad \sin (\pi E)=0, \quad \sinh (\pi T)=0} \tag{2}\\
& \sin \left(\frac{\pi}{2}\left(E^{2}+T^{2}\right)\right)=0 \tag{3}
\end{align*}
$$

Proof. Consider a Hodge structure on V. By (1) (cf. Definition 1.1 (iii)) this gives a representation:

$$
\rho: \mathbb{S} \rightarrow \mathrm{GL}(V)
$$

of real algebraic groups. The representation ρ decomposes into irreducible representations $\rho_{p, q}$ with multiplicities $m_{p, q}$

$$
\begin{align*}
& \rho=\bigoplus_{q \leqslant p} m_{p, q} \rho_{p, q}, \\
& \rho_{p, q}\left(r e^{i \phi}\right):=r^{p+q}\left[\begin{array}{cc}
\cos (p-q) \phi & -\sin (p-q) \phi \\
\sin (p-q) \phi & \cos (p-q) \phi
\end{array}\right] \text { for } p \neq q, p, q \in \mathbb{Z}, \\
& \rho_{p, p}\left(r e^{i \phi}\right):=r^{2 p}[1] . \tag{4}
\end{align*}
$$

Certainly, the complexification of the representation $\rho_{p, q}$ for $q<p$ decomposes into two one-dimensional \mathbb{C}-vector spaces:

$$
\begin{equation*}
\rho_{p, q} \otimes_{\mathbb{R}} \mathbb{C}=\rho_{p, q}^{\mathbb{C}} \oplus \rho_{q, p}^{\mathbb{C}}, \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{m, n}^{\mathbb{C}}(z)=z^{m} \bar{z}^{n} \tag{6}
\end{equation*}
$$

Consider the real Lie algebra representation (the derivative of ρ):

$$
\mathcal{L}(\rho): \mathbb{C} \rightarrow \operatorname{End}_{\mathbb{R}}(V)
$$

For $q<p$ the representation $\mathcal{L}\left(\rho_{p, q}\right)$ is also two-dimensional

$$
\begin{equation*}
\mathcal{L}\left(\rho_{p, q}\right)(1)=(p+q) I \quad \text { and } \quad \mathcal{L}\left(\rho_{p, q}\right)(i)=(p-q) J, \tag{7}
\end{equation*}
$$

where

$$
I=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad J=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

For $p=q$

$$
\begin{equation*}
\mathcal{L}\left(\rho_{p, p}\right)(1)=2 p \quad \text { and } \quad \mathcal{L}\left(\rho_{p, p}\right)(i)=0 \tag{8}
\end{equation*}
$$

If we put

$$
\begin{equation*}
E:=\mathcal{L}(\rho)(1) \quad \text { and } \quad T:=\mathcal{L}(\rho)(i) \tag{9}
\end{equation*}
$$

then we get Eqs. (2) and (3). The condition (3) is fulfilled because $p-q$ and $p+q$ have the same parity.

Now let us assume that conditions (2) and (3) hold. Observe that $\sinh (z)$ and $\sin (z)$ have single zeros in the complex plane. Moreover (2) and (3) imply that the complexifications $E \otimes 1$ and $T \otimes 1 \in \operatorname{End}_{\mathbb{C}}\left(V_{\mathbb{C}}\right)$ have common eigenbasis. From this it follows that the endomorphisms $E, T \in \operatorname{End}_{\mathbb{R}}(V)$ have common Jordan decomposition into eigenspaces of dimension 1 or 2 . We define a representation

$$
\begin{aligned}
& \rho: \mathbb{C}^{\times} \rightarrow \mathrm{GL}(V) \\
& \rho\left(e^{x+i y}\right)=\exp (x E+y T) \quad \text { for } x, y \in \mathbb{R} .
\end{aligned}
$$

ρ is an algebraic representation, because the equality (3) holds. The representation ρ gives the Hodge structure on V.

3. Hodge structures via single operator

Let $\sigma(z)$ be the Weierstrass sigma function for the lattice generated by $\omega_{1}=1-i$ and $\omega_{2}=1+i$:

$$
\sigma(z):=z \prod_{\left(k_{1}, k_{2}\right) \neq(0,0)}\left(1-\frac{z}{k_{1} \omega_{1}+k_{2} \omega_{2}}\right) \exp \left[\frac{z}{k_{1} \omega_{1}+k_{2} \omega_{2}}+\frac{1}{2}\left(\frac{z}{k_{1} \omega_{1}+k_{2} \omega_{2}}\right)^{2}\right]
$$

Theorem 3.1. For operators $E, T \in \operatorname{End}_{\mathbb{R}}(V)$ defined in (9) let $S:=E+T$. Then we get the following equality

$$
\begin{equation*}
\sigma(S)=0 . \tag{10}
\end{equation*}
$$

Conversely every $S \in \operatorname{End}_{\mathbb{R}}(V)$ satisfying condition (10) gives a unique pair (E, T) of operators in $\operatorname{End}_{\mathbb{R}}(V)$ such that $S=E+T$ and the conditions (2) and (3) hold.

Proof. Let

$$
S_{p, q}:=\mathcal{L}\left(\rho_{p, q}\right)(1)+\mathcal{L}\left(\rho_{p, q}\right)(i)= \begin{cases}(p+q) I+(p-q) J & \text { if } p<q \\ 2 p[1] & \text { if } p=q\end{cases}
$$

From (4), (7) and (8) we get, that $S=E+T$ has the following Jordan decomposition

$$
\begin{equation*}
S=\bigoplus_{q \leqslant p} m_{p, q} S_{p, q} \tag{11}
\end{equation*}
$$

Observe that $f_{p, p}(z):=z-2 p$ is the characteristic polynomial of $S_{p, p}$ and it divides the $\sigma(z)$ in the domain of analytic functions. Moreover the characteristic polynomial

$$
f_{p, q}(z):=(z-(p+q)-(p-q) i)(z-(p+q)+(p-q) i)
$$

of the operator $S_{p, q}$ for $q<p$, is also a factor of $\sigma(z)$ in the domain of analytic functions. So the minimal polynomial $f(z)$ of S is also a factor of the Weierstrass σ-function as a product of the form $\prod_{p, q} f_{p, q}(z)^{n_{p, q}}$, where $n_{p, q} \in\{0,1\}$ and $n_{p, q}=0$ for almost all (p, q). Hence $S=E+T$ satisfies Eq. (10).

Conversely, assume that an operator $S \in \operatorname{End}_{\mathbb{R}}(V)$ satisfies (10). Since the σ-function has zeros of order 1 , we observe that the complexification of S is diagonalizable. We get the operators E and T considering equation

$$
\begin{equation*}
S(v)=\lambda v \tag{12}
\end{equation*}
$$

in the complexification of V. The eigenvalues have integer real and imaginary parts with the same parity:

$$
\begin{equation*}
\lambda=a+i b, \quad a, b \in \mathbf{Z}, a-b \in 2 \mathbf{Z} \tag{13}
\end{equation*}
$$

Moreover we define the operators E, T in such a way that their complexifications acting on the eigenvector v of S have form: $E(v)=a v$ and $T(v)=i b v$ where $S(v)=(a+i b) v$. Operators E and T satisfy Eqs. (2) and (3). The operators E and T are uniquely determined. Indeed, if $S=E^{\prime}+T^{\prime}$ such that E^{\prime} and T^{\prime} satisfy (2) and (3) then it is clear that $\left[E^{\prime}, S\right]=0$ and $\left[T^{\prime}, S\right]=0$.

Remark 3.2. For certain Hodge structures the set of eigenvalues of the complexification of S has further obstructions beyond (13). In this case S satisfies the equation $g(S)=0$, where $g(z)$ is an analytic function that divides $\sigma(z)$ in such a way that $\frac{\sigma(z)}{g(z)}$ is also an analytic function on the whole complex plane.

Remark 3.3. In our work in progress we define certain deformations of Hodge structures that arise in a natural way in mathematical physics (see [1,3,4]).

References

[1] G. Banaszak, J. Milewski, Hodge structures in topological quantum mechanics, J. Phys. Conf. Ser. 213 (2010) 012017.
[2] B. Gordon, A survey of the Hodge conjecture for abelian varieties, in: J. Lewis (Ed.), A Survey of the Hodge Conjecture, American Mathematical Society, 1999, pp. 297-356 (Appendix B).
[3] J. Milewski, Holomorphons and the standard almost complex structure on S^{6}, Comment. Math. XLVI (2) (2006) 245-254.
[4] J. Milewski, Holomorphons on spheres, Comment. Math. B XLVIII (2) (2008) 13-22.
[5] C. Peters, J. Steenbrink, Mixed Hodge Structures, Ergeb. Math. Grenzgeb., vol. 52, Springer, 2008.

[^0]: E-mail addresses: banaszak@amu.edu.pl (G. Banaszak), jsmilew@wp.pl (J. Milewski).
 1 Partially supported by the NCN (National Center of Science for Poland) NN201 607440.
 2 Partially supported by the NCN grant NN201 373236.
 1631-073X/\$ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.09.012

