

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris. Ser. I

www.sciencedirect.com

Algebraic Geometry Hodge structures and Weierstrass σ -function

Structures de Hodge et fonction σ de Weierstrass

Grzegorz Banaszak^{a,1}, Jan Milewski^{b,2}

^a Department of Mathematics and Computer Science, Adam Mickiewicz University, 61-614 Poznań, Poland ^b Institute of Mathematics, Poznań University of Technology, ul. Piotrowo 3A, 60-965 Poznań, Poland

ARTICLE INFO

Article history: Received 30 July 2012 Accepted after revision 18 September 2012 Available online 1 October 2012

Presented by Christophe Soulé

ABSTRACT

In this Note we introduce new definition of Hodge structures and show that \mathbb{R} -Hodge structures are determined by \mathbb{R} -linear operators that are annihilated by the Weierstrass σ -function.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cette Note, nous introduisons une nouvelle définition des structures de Hodge et démontrons que les structures de Hodge sur $\mathbb R$ sont déterminées par des transformations \mathbb{R} -linéaires qui sont des zéros de la fonction σ de Weierstrass.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Classically a real Hodge structure of a given weight can be defined in four equivalent ways as follows (see e.g. [2,5]):

Definition 1.1. A real Hodge structure of a weight *n* consists of a finite-dimensional \mathbb{R} -vector space $V = V_{\mathbb{R}}$ together with any of the following equivalent data:

- (i) A decomposition $V_{\mathbb{C}} = \bigoplus_{p+q=n} V^{p,q}$, called the *Hodge decomposition*, such that $\overline{V^{p,q}} = V^{q,p}$, where $V_{\mathbb{C}} := V \otimes_{\mathbb{R}} \mathbb{C}$.
- (ii) A decreasing filtration $F_H^r V_{\mathbb{C}}$ of $V_{\mathbb{C}}$, called the *Hodge filtration*, such that $F_H^r V_{\mathbb{C}} \oplus \overline{F_H^{n-r+1}V_{\mathbb{C}}} = V_{\mathbb{C}}$. (iii) A homomorphism $h_n : \mathbb{S} \to GL(V_{\mathbb{R}})$ of real algebraic groups, and also specifying that the weight of the Hodge structure is *n*, where $\mathbb{S} := R_{\mathbb{C}/\mathbb{R}}\mathbb{G}_m$.
- (iv) A homomorphism $h_n : \mathbb{S} \to GL(V_{\mathbb{R}})$ of real algebraic groups such that via the composition $\mathbb{G}_m/\mathbb{R} \to \mathbb{S} \to GL(V_{\mathbb{R}})$ an element $t \in \mathbb{G}_m/\mathbb{R}$ acts as $t^{-n} \cdot Id$.

Throughout the paper we work with Hodge structures of various weights, hence by a Hodge structure we understand here a finite direct sum

1631-073X/\$ - see front matter © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2012.09.012

E-mail addresses: banaszak@amu.edu.pl (G. Banaszak), jsmilew@wp.pl (J. Milewski).

¹ Partially supported by the NCN (National Center of Science for Poland) NN201 607440.

² Partially supported by the NCN grant NN201 373236.

(1)

$$\rho := \bigoplus_{j=1}^k h_{n_j}$$

of representations h_{n_i} described in (iii) or (iv) of Definition 1.1.

In this paper we consider Hodge structures on real vector space *V* via representations of the Lie algebra of the real algebraic group S (denoted also \mathbb{C}^{\times}) on *V*. In Section 2 we show that a Hodge structure can be treated as a pair of operators *E*, *T* on *V* satisfying certain conditions (see Theorem 2.1). In Section 3 we show that a Hodge structure can be treated as a single operator S := E + T on *V* such that $\sigma(S) = 0$ for a Weierstrass σ -function which corresponds to decomposition of *V* into eigenspaces of the operators *E* and *T*. Weierstrass σ -function does not have multiple zeros and this corresponds to the fact that the complexification of *S* does not have generalized eigenvectors other than ordinary ones.

2. Hodge structures and Lie algebras

The following theorem gives another definition of the Hodge structure.

Theorem 2.1. Let *V* be a finite-dimensional vector space over \mathbb{R} . There is a one-to-one correspondence between the family of Hodge structures on *V* and the family of pairs of endomorphisms $E, T \in End_{\mathbb{R}}(V)$ satisfying the following conditions:

$$[E, T] = 0, \quad \sin(\pi E) = 0, \quad \sinh(\pi T) = 0, \tag{2}$$
$$\sin\left(\frac{\pi}{2}(E^2 + T^2)\right) = 0. \tag{3}$$

Proof. Consider a Hodge structure on V. By (1) (cf. Definition 1.1 (iii)) this gives a representation:

$$\rho: \mathbb{S} \to \mathrm{GL}(V)$$

of real algebraic groups. The representation ρ decomposes into irreducible representations $\rho_{p,q}$ with multiplicities $m_{p,q}$

$$\rho = \bigoplus_{q \leqslant p} m_{p,q} \rho_{p,q},$$

$$\rho_{p,q} (re^{i\phi}) := r^{p+q} \begin{bmatrix} \cos(p-q)\phi & -\sin(p-q)\phi \\ \sin(p-q)\phi & \cos(p-q)\phi \end{bmatrix} \quad \text{for } p \neq q, \ p,q \in \mathbb{Z},$$

$$\rho_{p,p} (re^{i\phi}) := r^{2p} [1].$$
(4)

Certainly, the complexification of the representation $\rho_{p,q}$ for q < p decomposes into two one-dimensional \mathbb{C} -vector spaces:

$$\rho_{p,q} \otimes_{\mathbb{R}} \mathbb{C} = \rho_{p,q}^{\mathbb{C}} \oplus \rho_{q,p}^{\mathbb{C}},\tag{5}$$

where

$$\rho_{m,n}^{\mathbb{C}}(z) = z^m \bar{z}^n.$$
(6)

Consider the real Lie algebra representation (the derivative of ρ):

$$\mathcal{L}(\rho): \mathbb{C} \to \operatorname{End}_{\mathbb{R}}(V).$$

For q < p the representation $\mathcal{L}(\rho_{p,q})$ is also two-dimensional

$$\mathcal{L}(\rho_{p,q})(1) = (p+q)I \quad \text{and} \quad \mathcal{L}(\rho_{p,q})(i) = (p-q)J, \tag{7}$$

where

$$I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \qquad J = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}.$$

For p = q

$$\mathcal{L}(\rho_{p,p})(1) = 2p \quad \text{and} \quad \mathcal{L}(\rho_{p,p})(i) = 0.$$
(8)

If we put

$$E := \mathcal{L}(\rho)(1) \quad \text{and} \quad T := \mathcal{L}(\rho)(i) \tag{9}$$

then we get Eqs. (2) and (3). The condition (3) is fulfilled because p - q and p + q have the same parity.

2)

(13)

Now let us assume that conditions (2) and (3) hold. Observe that $\sinh(z)$ and $\sin(z)$ have single zeros in the complex plane. Moreover (2) and (3) imply that the complexifications $E \otimes 1$ and $T \otimes 1 \in \text{End}_{\mathbb{C}}(V_{\mathbb{C}})$ have common eigenbasis. From this it follows that the endomorphisms $E, T \in \text{End}_{\mathbb{R}}(V)$ have common Jordan decomposition into eigenspaces of dimension 1 or 2. We define a representation

$$\rho: \mathbb{C}^{\times} \to \mathrm{GL}(V),$$

$$\rho(e^{x+iy}) = \exp(xE + yT) \quad \text{for } x, y \in \mathbb{R}.$$

 ρ is an algebraic representation, because the equality (3) holds. The representation ρ gives the Hodge structure on V.

3. Hodge structures via single operator

Let $\sigma(z)$ be the Weierstrass sigma function for the lattice generated by $\omega_1 = 1 - i$ and $\omega_2 = 1 + i$:

$$\sigma(z) := z \prod_{(k_1,k_2) \neq (0,0)} \left(1 - \frac{z}{k_1 \omega_1 + k_2 \omega_2} \right) \exp\left[\frac{z}{k_1 \omega_1 + k_2 \omega_2} + \frac{1}{2} \left(\frac{z}{k_1 \omega_1 + k_2 \omega_2} \right)^2 \right].$$

Theorem 3.1. For operators $E, T \in \text{End}_{\mathbb{R}}(V)$ defined in (9) let S := E + T. Then we get the following equality

$$\sigma(S) = 0. \tag{10}$$

Conversely every $S \in \text{End}_{\mathbb{R}}(V)$ satisfying condition (10) gives a unique pair (E, T) of operators in $\text{End}_{\mathbb{R}}(V)$ such that S = E + T and the conditions (2) and (3) hold.

Proof. Let

$$S_{p,q} := \mathcal{L}(\rho_{p,q})(1) + \mathcal{L}(\rho_{p,q})(i) = \begin{cases} (p+q)I + (p-q)J & \text{if } p < q, \\ 2p[1] & \text{if } p = q. \end{cases}$$

From (4), (7) and (8) we get, that S = E + T has the following Jordan decomposition

$$S = \bigoplus_{q \leqslant p} m_{p,q} S_{p,q}.$$
(11)

Observe that $f_{p,p}(z) := z - 2p$ is the characteristic polynomial of $S_{p,p}$ and it divides the $\sigma(z)$ in the domain of analytic functions. Moreover the characteristic polynomial

$$f_{p,q}(z) := (z - (p+q) - (p-q)i)(z - (p+q) + (p-q)i)$$

of the operator $S_{p,q}$ for q < p, is also a factor of $\sigma(z)$ in the domain of analytic functions. So the minimal polynomial f(z) of S is also a factor of the Weierstrass σ -function as a product of the form $\prod_{p,q} f_{p,q}(z)^{n_{p,q}}$, where $n_{p,q} \in \{0, 1\}$ and $n_{p,q} = 0$ for almost all (p, q). Hence S = E + T satisfies Eq. (10).

Conversely, assume that an operator $S \in \text{End}_{\mathbb{R}}(V)$ satisfies (10). Since the σ -function has zeros of order 1, we observe that the complexification of *S* is diagonalizable. We get the operators *E* and *T* considering equation

$$S(v) = \lambda v \tag{1}$$

in the complexification of V. The eigenvalues have integer real and imaginary parts with the same parity:

$$\lambda = a + ib, \quad a, b \in \mathbf{Z}, \ a - b \in 2\mathbf{Z}.$$

Moreover we define the operators *E*, *T* in such a way that their complexifications acting on the eigenvector *v* of *S* have form: E(v) = av and T(v) = ibv where S(v) = (a + ib)v. Operators *E* and *T* satisfy Eqs. (2) and (3). The operators *E* and *T* are uniquely determined. Indeed, if S = E' + T' such that E' and T' satisfy (2) and (3) then it is clear that [E', S] = 0 and [T', S] = 0. \Box

Remark 3.2. For certain Hodge structures the set of eigenvalues of the complexification of *S* has further obstructions beyond (13). In this case *S* satisfies the equation g(S) = 0, where g(z) is an analytic function that divides $\sigma(z)$ in such a way that $\frac{\sigma(z)}{\sigma(z)}$ is also an analytic function on the whole complex plane.

Remark 3.3. In our work in progress we define certain deformations of Hodge structures that arise in a natural way in mathematical physics (see [1,3,4]).

References

- [1] G. Banaszak, J. Milewski, Hodge structures in topological quantum mechanics, J. Phys. Conf. Ser. 213 (2010) 012017.
- [2] B. Gordon, A survey of the Hodge conjecture for abelian varieties, in: J. Lewis (Ed.), A Survey of the Hodge Conjecture, American Mathematical Society, 1999, pp. 297–356 (Appendix B).
- [3] J. Milewski, Holomorphons and the standard almost complex structure on S⁶, Comment. Math. XLVI (2) (2006) 245–254.
- [4] J. Milewski, Holomorphons on spheres, Comment. Math. B XLVIII (2) (2008) 13-22.
- [5] C. Peters, J. Steenbrink, Mixed Hodge Structures, Ergeb. Math. Grenzgeb., vol. 52, Springer, 2008.