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In this Note we introduce new definition of Hodge structures and show that R-Hodge
structures are determined by R-linear operators that are annihilated by the Weierstrass
σ -function.
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r é s u m é

Dans cette Note, nous introduisons une nouvelle définition des structures de Hodge et
démontrons que les structures de Hodge sur R sont déterminées par des transformations
R-linéaires qui sont des zéros de la fonction σ de Weierstrass.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Classically a real Hodge structure of a given weight can be defined in four equivalent ways as follows (see e.g. [2,5]):

Definition 1.1. A real Hodge structure of a weight n consists of a finite-dimensional R-vector space V = VR together with
any of the following equivalent data:

(i) A decomposition VC = ⊕
p+q=n V p,q , called the Hodge decomposition, such that V p,q = V q,p , where VC := V ⊗R C.

(ii) A decreasing filtration F r
H VC of VC , called the Hodge filtration, such that F r

H VC ⊕ F n−r+1
H VC = VC .

(iii) A homomorphism hn : S → GL(VR) of real algebraic groups, and also specifying that the weight of the Hodge structure
is n, where S := RC/RGm .

(iv) A homomorphism hn : S → GL(VR) of real algebraic groups such that via the composition Gm/R → S → GL(VR) an el-
ement t ∈ Gm/R acts as t−n · Id.

Throughout the paper we work with Hodge structures of various weights, hence by a Hodge structure we understand
here a finite direct sum
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ρ :=
k⊕

j=1

hn j (1)

of representations hn j described in (iii) or (iv) of Definition 1.1.
In this paper we consider Hodge structures on real vector space V via representations of the Lie algebra of the real

algebraic group S (denoted also C
×) on V . In Section 2 we show that a Hodge structure can be treated as a pair of

operators E , T on V satisfying certain conditions (see Theorem 2.1). In Section 3 we show that a Hodge structure can
be treated as a single operator S := E + T on V such that σ(S) = 0 for a Weierstrass σ -function which corresponds to
decomposition of V into eigenspaces of the operators E and T . Weierstrass σ -function does not have multiple zeros and
this corresponds to the fact that the complexification of S does not have generalized eigenvectors other than ordinary ones.

2. Hodge structures and Lie algebras

The following theorem gives another definition of the Hodge structure.

Theorem 2.1. Let V be a finite-dimensional vector space over R. There is a one-to-one correspondence between the family of Hodge
structures on V and the family of pairs of endomorphisms E, T ∈ EndR(V ) satisfying the following conditions:

[E, T ] = 0, sin(π E) = 0, sinh(π T ) = 0, (2)

sin

(
π

2

(
E2 + T 2)) = 0. (3)

Proof. Consider a Hodge structure on V . By (1) (cf. Definition 1.1 (iii)) this gives a representation:

ρ : S → GL(V )

of real algebraic groups. The representation ρ decomposes into irreducible representations ρp,q with multiplicities mp,q

ρ =
⊕
q�p

mp,qρp,q,

ρp,q
(
reiφ) := r p+q

[
cos(p − q)φ − sin(p − q)φ

sin(p − q)φ cos(p − q)φ

]
for p �= q, p,q ∈ Z,

ρp,p
(
reiφ) := r2p [ 1 ] . (4)

Certainly, the complexification of the representation ρp,q for q < p decomposes into two one-dimensional C-vector spaces:

ρp,q ⊗R C = ρC
p,q ⊕ ρC

q,p, (5)

where

ρC
m,n(z) = zmzn. (6)

Consider the real Lie algebra representation (the derivative of ρ):

L(ρ) : C → EndR(V ).

For q < p the representation L(ρp,q) is also two-dimensional

L(ρp,q)(1) = (p + q)I and L(ρp,q)(i) = (p − q) J , (7)

where

I =
[

1 0
0 1

]
, J =

[
0 −1
1 0

]
.

For p = q

L(ρp,p)(1) = 2p and L(ρp,p)(i) = 0. (8)

If we put

E := L(ρ)(1) and T := L(ρ)(i) (9)

then we get Eqs. (2) and (3). The condition (3) is fulfilled because p − q and p + q have the same parity.
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Now let us assume that conditions (2) and (3) hold. Observe that sinh(z) and sin(z) have single zeros in the complex
plane. Moreover (2) and (3) imply that the complexifications E ⊗ 1 and T ⊗ 1 ∈ EndC(VC) have common eigenbasis. From
this it follows that the endomorphisms E, T ∈ EndR(V ) have common Jordan decomposition into eigenspaces of dimension 1
or 2. We define a representation

ρ : C× → GL(V ),

ρ
(
ex+iy) = exp(xE + yT ) for x, y ∈ R.

ρ is an algebraic representation, because the equality (3) holds. The representation ρ gives the Hodge structure on V . �
3. Hodge structures via single operator

Let σ(z) be the Weierstrass sigma function for the lattice generated by ω1 = 1 − i and ω2 = 1 + i:

σ(z) := z
∏

(k1,k2) �=(0,0)

(
1 − z

k1ω1 + k2ω2

)
exp

[
z

k1ω1 + k2ω2
+ 1

2

(
z

k1ω1 + k2ω2

)2]
.

Theorem 3.1. For operators E, T ∈ EndR(V ) defined in (9) let S := E + T . Then we get the following equality

σ(S) = 0. (10)

Conversely every S ∈ EndR(V ) satisfying condition (10) gives a unique pair (E, T ) of operators in EndR(V ) such that S = E + T and
the conditions (2) and (3) hold.

Proof. Let

S p,q := L(ρp,q)(1) +L(ρp,q)(i) =
{

(p + q)I + (p − q) J if p < q,

2p[ 1 ] if p = q.

From (4), (7) and (8) we get, that S = E + T has the following Jordan decomposition

S =
⊕
q�p

mp,q S p,q. (11)

Observe that f p,p(z) := z − 2p is the characteristic polynomial of S p,p and it divides the σ(z) in the domain of analytic
functions. Moreover the characteristic polynomial

f p,q(z) := (
z − (p + q) − (p − q)i

)(
z − (p + q) + (p − q)i

)
of the operator S p,q for q < p, is also a factor of σ(z) in the domain of analytic functions. So the minimal polynomial f (z)
of S is also a factor of the Weierstrass σ -function as a product of the form

∏
p,q f p,q(z)np,q , where np,q ∈ {0,1} and np,q = 0

for almost all (p,q). Hence S = E + T satisfies Eq. (10).
Conversely, assume that an operator S ∈ EndR(V ) satisfies (10). Since the σ -function has zeros of order 1, we observe

that the complexification of S is diagonalizable. We get the operators E and T considering equation

S(v) = λv (12)

in the complexification of V . The eigenvalues have integer real and imaginary parts with the same parity:

λ = a + ib, a,b ∈ Z, a − b ∈ 2Z. (13)

Moreover we define the operators E , T in such a way that their complexifications acting on the eigenvector v of S have
form: E(v) = av and T (v) = ibv where S(v) = (a + ib)v . Operators E and T satisfy Eqs. (2) and (3). The operators E and T
are uniquely determined. Indeed, if S = E ′ + T ′ such that E ′ and T ′ satisfy (2) and (3) then it is clear that [E ′, S] = 0 and
[T ′, S] = 0. �
Remark 3.2. For certain Hodge structures the set of eigenvalues of the complexification of S has further obstructions be-
yond (13). In this case S satisfies the equation g(S) = 0, where g(z) is an analytic function that divides σ(z) in such a way
that σ(z)

g(z) is also an analytic function on the whole complex plane.

Remark 3.3. In our work in progress we define certain deformations of Hodge structures that arise in a natural way in
mathematical physics (see [1,3,4]).
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