Mathematical Analysis/Mathematical Problems in Mechanics

Asymptotically exact Korn’s constant for thin cylindrical domains

Développement asymptotique précis de la constante de Korn dans une poutre mince

Roberto Paroni, Giuseppe Tomassetti

A Dipartimento di Architettura e Pianificazione, Università degli Studi di Sassari, 07041 Alghero, Italy
B Dipartimento di Ingegneria Civile, Università degli Studi di Roma “Tor Vergata”, 00133 Roma, Italy

1. Introduction and results

Given a domain \(\Omega \subset \mathbb{R}^3 \), Korn’s inequality [13]:

\[
\int_{\Omega} |\nabla u|^2 \, d^3 x \leq C_K \int_{\Omega} |\mathbf{E}(u)|^2 \, d^3 x, \quad \forall u \in \mathcal{A} \subset H^1(\Omega; \mathbb{R}^3)
\]

is the key estimate to establish the solvability of the boundary-value problem of linear elastostatics [2]. This estimate holds under fairly general assumptions on \(\Omega \), provided that certain side conditions are imposed on the displacement \(u \) through the choice of the admissible space \(\mathcal{A} \) (two examples are given in (2) below). It asserts that the \(L^2 \) norm of the strain \(\mathbf{E}(u) := \text{sym} \nabla u \) controls the \(L^2 \) norm of the whole displacement gradient. The optimal choice for Korn’s constant \(C_K \) is given by \(1/K(\Omega, \mathcal{A}) \), where

\[
K(\Omega, \mathcal{A}) := \inf_{u \in \mathcal{A} \setminus \{0\}} \frac{\int_{\Omega} |\mathbf{E}(u)|^2 \, d^3 x}{\int_{\Omega} |\nabla u|^2 \, d^3 x}.
\]

A vast body of literature investigates the dependence of Korn’s constant on the geometric properties of the domain. Estimates for thin domains, such as rods and plates, were obtained in [12,15,1,3,18,5,16,11]. Let us consider a family of rod-like domains:
$\Omega^\varepsilon = \varepsilon \omega \times (0, \ell) := \{ x' = (\varepsilon x_1, \varepsilon x_2, x_3) \in \mathbb{R}^3 : (x_1, x_2) \in \omega, x_3 \in (0, \ell) \}$ with $\varepsilon > 0$,
and let us set
\[
\kappa_{\varepsilon}^\omega (\omega, \ell) := \frac{1}{\varepsilon^2} K (\Omega^\varepsilon, A_{\varepsilon}^\omega) = \sup_{u \in A_{\varepsilon}^\omega \setminus \{0\}} \frac{\int_{\Omega^\varepsilon} |E(u)|^2 d^3x}{\int_{\Omega^\varepsilon} |\nabla u|^2 d^3x},
\]
where the subscript "\(\varepsilon\)" stands for either "dd" or "dn", with
\[
A_{dd}^\varepsilon = \{ u \in H^1 (\Omega^\varepsilon ; \mathbb{R}^3) : u|_{x_3 = 0} = u|_{x_3 = \ell} = 0 \}, \quad A_{dn}^\varepsilon = \{ u \in H^1 (\Omega^\varepsilon ; \mathbb{R}^3) : u|_{x_3 = 0} = 0 \}.
\]
In this note we show that
\[
\lim_{\varepsilon \to 0} \kappa_{\varepsilon}^\omega (\omega, \ell) = \kappa^\omega (\omega, \ell), \quad \text{where } \kappa_{dd} (\omega, \ell) = \frac{\pi^2}{4 \ell^2} J (\omega) \quad \text{and } \kappa_{dn} (\omega, \ell) = \frac{\pi^2}{8 \ell^2} J (\omega),
\]
with
\[
J_1 (\omega) := \min_{\varepsilon \in H^1 (\omega)} \int_{\omega} (D_1 \psi - x_2)^2 + (D_2 \psi + x_1)^2 \, dx_1 \, dx_2, \quad J (\omega) := \min \left\{ J_1 (\omega), J_2 (\omega), \frac{J_1 (\omega)}{2} \right\},
\]
\[
J_1 (\omega) := \int_{\omega} x_1^2 \, dx_1 \, dx_2, \quad J_2 (\omega) := \int_{\omega} x_2^2 \, dx_1 \, dx_2, \quad A (\omega) := \int_{\omega} 1 \, dx_1 \, dx_2.
\]
We point out that, while the limit κ_{dd} depends on the cross-section simply through the ratio J_1 / A, the dependence of κ_{dn} on ω is more involved. For example, $J_1 / 2 = J_1$ for a circle, $J < J_1 / 2$ for an ellipsis, and $J_1 / 2 < J$ for a square. A detailed discussion of these examples can be found in [20].

2. Rescaling and Γ-convergence of Rayleigh’s quotient

Our proof of (3) is based on Γ-convergence. Following the standard approach [4], we perform a change of variables. To this end, we set $\Omega = \Omega^3$, and $A^\varepsilon = A_{\varepsilon}^1$. Then, to every $u \in A^\varepsilon$ we associate $v \in A^\varepsilon$ defined by $v_\alpha (x) = \varepsilon u_\alpha (x')$ and $v_3 (x) = u_3 (x')$, where $x = (x_1, x_2, x_3) \in \Omega$ and $x' = (\varepsilon x_1, \varepsilon x_2, x_3) \in \Omega^\varepsilon$. As a result, we can rewrite (1) as
\[
\kappa_{\varepsilon}^\omega (\omega, \ell) = \inf_{v \in A_{\varepsilon}^\omega \setminus \{0\}} \mathcal{R}^\omega (v), \quad \text{where } \mathcal{R}^\omega (v) := \frac{\int_{\Omega} |E^\varepsilon (v)|^2 d^3x}{\int_{\Omega} |\nabla^\varepsilon v|^2 d^3x},
\]
with
\[
[\nabla^\varepsilon v]_{\alpha \beta} = \frac{\varepsilon v_{\alpha, \beta}}{\varepsilon^2}, \quad (\nabla^\varepsilon v)_{\alpha 3} = \frac{v_{\alpha, 3}}{\varepsilon}, \quad (\nabla^\varepsilon v)_{3 \alpha} = - \frac{v_{3, \alpha}}{\varepsilon}, \quad (\nabla^\varepsilon v)_{33} = \varepsilon v_{3, 3}, \quad E^\varepsilon (v) = \text{sym } \nabla^\varepsilon v,
\]
where Greek indices run over $\{1, 2\}$, and a comma denotes partial differentiation. We next introduce the spaces:
\[
A_{BN} := \{ v \in H^1 (\Omega; \mathbb{R}^3) : E_{33} (v) = 0 \},
\]
\[
H^1_{dn} (0, \ell) := \{ f \in H^1 (0, \ell) : f (0) = 0 \}, \quad \text{and } H^1_{dd} (0, \ell) := \{ f \in H^1_{dn} (0, \ell) : f (\ell) = 0 \},
\]
and we prove:

Theorem 2.1. Let the functional $\mathcal{R} : A^\varepsilon \times H^1_{2} (0, \ell) \to \mathbb{R} \cup [+\infty]$ be defined by
\[
\mathcal{R} (v, \theta) := \frac{\int_{\Omega} v^2_{3, 3} + \frac{1}{\varepsilon^2} (\theta^2)^2 d^3x}{\int_{\Omega} 2 W_{13}^2 (v) + W_{23}^2 (v) + \theta^2 d^3x}, \quad \text{if } (v, \theta) \neq (0, 0) \text{ and } v \in A^\varepsilon \cap A_{BN} =: A_{BN}^\varepsilon,
\]
and $\mathcal{R} (v, \theta) := +\infty$ otherwise. The sequence \mathcal{R}^ε Γ-converges to \mathcal{R} in the following sense:

(i) for every sequence $\{ v^\varepsilon \} \subset A^\varepsilon$ and for every $(v, \theta) \in A^\varepsilon \times H^1_{2} (0, \ell)$ such that $v^\varepsilon \rightharpoonup v$ and $(\varepsilon \nabla v^\varepsilon)_{21, 12} \rightharpoonup \theta$, we have that $\mathcal{R} (v, \theta) \leq \liminf_{\varepsilon \to 0} \mathcal{R}^\varepsilon (v^\varepsilon)$;
(ii) for every $(v, \theta) \in A^\varepsilon \times H^1_{2} (0, \ell)$ there exists a sequence $\{ v^\varepsilon \} \subset A^\varepsilon$ such that $v^\varepsilon \rightharpoonup v$, $(\varepsilon \nabla v^\varepsilon)_{21, 12} \rightharpoonup \theta$, and $\limsup_{\varepsilon} \mathcal{R}^\varepsilon (v^\varepsilon) \leq \mathcal{R} (v, \theta)$.

In order to prove the \liminf inequality (i), we use the lower semicontinuity of the numerator of \mathcal{R}^ε with respect to the weak convergence in L^2 of $E^\varepsilon (v^\varepsilon)$, and certain arguments of common use to derive rod theories (see for example [1,11,42]). We also use the strong convergence of $\varepsilon \nabla v^\varepsilon$ in the denominator. To this aim we use the next theorem, where $\mathbb{R}^{3 \times 3}_{\text{skev}}$ is the space of skew-symmetric 3×3 matrices and $W(u) = \frac{1}{2} (\nabla u - \nabla u^T)$.

Theorem 2.2. Let \(\{ \mathbf{v}^\varepsilon \} \subset \mathcal{A}_0 \) be such that \(\sup_{\varepsilon} \| \mathbf{E}^\varepsilon (\mathbf{v}^\varepsilon) \|_{L^2} < +\infty \). Then, up to a subsequence, we have
\[
\mathbf{v}^\varepsilon \rightharpoonup^H \mathbf{v} \in \mathcal{A}_0, \quad \mathbf{E}^\varepsilon (\mathbf{v}) \rightharpoonup^L \mathbf{E} \quad \text{with} \quad E_3(\mathbf{v}) = 0 \quad \text{and} \quad E_{33}(\mathbf{v}) = E_{33},
\]
\[
\varepsilon \nabla \mathbf{v}^\varepsilon \rightharpoonup^L \mathbf{W} \in H^1(\Omega; \mathbb{R}^{3 \times 3}_{\text{skew}}) \quad \text{with} \quad W_{\alpha 3} = W_{\alpha 3}(\mathbf{v}).
\]
Moreover, there exist \(\theta \in H^1_\sharp (0, \ell) \) and \(\varphi \in L^2(0, \ell; H^1(\omega)) \) such that
\[
W_{21}(\mathbf{x}) = \theta(x_3), \quad 2E_{13}(\mathbf{x}) = \varphi,_{1}(x_1, x_2) - x_{3} \theta'(x_3), \quad 2E_{23}(\mathbf{x}) = \varphi,_{2}(x_1, x_2) + x_{1} \theta'(x_3).
\]

By a standard result from \(\Gamma \)-convergence, see [6], Theorem 2.1 and Theorem 2.2 imply that
\[
\lim_{\varepsilon \to 0} \inf_{\mathbf{v} \in \mathcal{A}_0} \mathcal{R}^\varepsilon (\mathbf{v}) = \min_{(\mathbf{v}, \theta) \in \mathcal{A}_1^{BN} \times H^1_\sharp (0, \ell)} \mathcal{R}(\mathbf{v}, \theta).
\]

It is shown in [14] that the Bernoulli–Navier space \(\mathcal{A}_1^{BN} \) defined in the statement of Theorem 2.1 can be characterized as follows
\[
\mathcal{A}_1^{BN} = \{ \mathbf{v} \in H^1(\Omega; \mathbb{R}^3) : \nu_\alpha (\mathbf{x}) = w_\alpha (x_3), \quad \nu_3 (\mathbf{x}) = w_3 (x_3) - x_\alpha w,_{\alpha}(x_3), \quad w_\alpha \in H^2(0, \ell), \quad w_3 \in H^1(0, \ell) \},
\]
where a prime denotes differentiation. From this characterization we derive
\[
\min_{(\mathbf{v}, \theta) \in \mathcal{A}_1^{BN} \times H^1_\sharp (0, \ell)} \mathcal{R}(\mathbf{v}, \theta) = \min_{(\mathbf{v}, \theta) \in \mathcal{A}_1^{BN} \times H^1_\sharp (0, \ell)} \mathcal{R}(\mathbf{v}, \theta).
\]

From (7), by means of standard Poincaré’s inequalities, we arrive at (3). The statements contained in (4) are a direct consequence of the assumption \(\sup_{\varepsilon} \| \mathbf{E}^\varepsilon (\mathbf{v}^\varepsilon) \|_{L^2} < +\infty \). The characterization of \(W_{\alpha 3} \) proved under the assumption that \(\omega \) is simply connected, follows from a compatibility equation between infinitesimal strain and infinitesimal rotation.

The proof of the strong convergence statement (5) is quite delicate and it is achieved in several steps. First the function \(\mathbf{v} \) is extended, by using a method of [17], to the infinite cylinder \(\omega \times (-\infty, +\infty) \) in such a way that \(\| \mathbf{E}^\varepsilon (\mathbf{v}^\varepsilon) \|_{L^2(\omega \times (-\infty, +\infty))} \leq C \| \mathbf{E}^\varepsilon (\mathbf{v}^\varepsilon) \|_{L^2(\Omega)} \). Then, by mollifying \(\varepsilon \nabla \mathbf{v}^\varepsilon \) with respect to \(x_3 \) and by integrating over \(\omega \), a function \(\mathbf{H}^\varepsilon = \mathbf{H}^\varepsilon (x_3) \) is defined. An argument based on the invariance of Korn’s constant under homothetic scaling (see [10,9]) yields a bound on the oscillation of \(\varepsilon \nabla \mathbf{v}^\varepsilon \) which, after appropriate estimates, leads to \(\| (\mathbf{H}^\varepsilon) \|_{L^2(\Omega)} \leq C \| \mathbf{E}^\varepsilon (\mathbf{v}^\varepsilon) \|_{L^2(\Omega)} \) and \(\| \mathbf{H}^\varepsilon - \varepsilon \nabla \mathbf{v}^\varepsilon \|_{L^2} \leq C \| \mathbf{E}^\varepsilon (\mathbf{v}^\varepsilon) \|_{L^2} \to 0 \). From these estimates we deduce that, up to a subsequence, \(\mathbf{H}^\varepsilon \rightharpoonup^H \mathbf{W} \) and that \(\mathbf{W} \) is also the strong \(L^2 \)-limit of \(\varepsilon \nabla \mathbf{v}^\varepsilon \).

The detailed proofs of the results presented in this Note will be given in a forthcoming paper [20]. The arguments presented can also be used to prove similar results for thin-walled beams [7,8], and for plates [3,19,21–23].

Acknowledgements

We gratefully acknowledge the assistance of Antonio Gaudiello and Gaetano Napoli in the preparation of the last draft of the manuscript.

References