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We define the genus gen(D) of a finite-dimensional central division algebra D over a field
K as the set of all classes [D ′] in the Brauer group Br(K ) that are represented by central
division K -algebras D ′ having the same maximal subfields as D . We give examples where
gen(D) is reduced to a single element, and other examples where it is finite.
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r é s u m é

Nous définissons le genre gen(D) d’un corps gauche central D de dimension finie sur
un corps K comme l’ensemble des classes [D ′] dans le groupe de Brauer Br(K ) qui sont
représentées par des corps gauches D ′ de centre K ayant les mêmes sous-corps maximaux
que D . Nous donnons des exemples où gen(D) est réduit à un seul élément, ainsi que
d’autres où gen(D) est fini.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Version française abrégée

Soit K un corps et Br(K ) son groupe de Brauer. Pour une algèbre centrale simple A sur K , on note [A] sa classe dans
Br(K ). On définit le genre gen(D) d’un corps gauche central D sur K comme l’ensemble des classes [D ′] ∈ Br(K ), où D ′ est
un corps gauche central sur K ayant les mêmes sous-corps maximaux que D . Dans cette note, on étudie les deux questions
suivantes :

Question 1. Quand est-ce que le genre est réduit à un seul élément ?

Question 2. Quand est-ce que gen(D) est fini ?

On observe que gen(D) peut être réduit à un seul élément seulement si [D] est d’exposant deux dans Br(K ) ; en effet,
dans cette situation, gen(D) consiste d’un seul élément si K est un corps global. On prouve, en particulier, que si K est un
corps de car. �= 2 qui a la propriété que |gen(D)| = 1 pour tout corps gauche D sur K d’exposant deux, alors le corps de
fractions rationelles K (x) a la même propriété. Par conséquent, |gen(D)| = 1 pour tout corps gauche D d’exposant deux sur
K = k(x1, . . . , xr), où k est soit un corps de nombres soit un corps fini de car. �= 2.
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On établit aussi le résultat de finitude suivant : soit K un corps de type fini sur son sous-corps premier, soit D un corps
gauche central sur K de degré n, (n, car. K ) = 1. Alors |gen(D)| est fini. La preuve est réduite à la démonstration de la
finitude du sous-groupe de n-torsion nBr(K )V du groupe de Brauer de K non-ramifié par rapport à un ensemble convenable
de valuations discrètes de K . On donne un exemple d’une borne explicite pour |gen(D)| dans le cas où D est une algèbre
de quaternions sur le corps de fractions k(E) d’une courbe elliptique définie sur un corps de nombres k.

1. Introduction

Let K be a field, Br(K ) be its Brauer group, and for any integer n > 1 let nBr(K ) be the subgroup of Br(K ) annihilated
by n. For a finite-dimensional central simple algebra A over K , we let [A] denote the corresponding class in Br(K ), and we
then define the genus gen(D) of a central division K -algebra D of degree n to be the set of classes [D ′] ∈ Br(K ) where D ′
is a central division K -algebra having the same maximal subfields as D (in more precise terms, this means that D ′ has the
same degree n, and a field extension P/K of degree n admits a K -embedding P ↪→ D if and only if it admits a K -embedding
P ↪→ D ′).1 One can ask the following two questions about the genus of a central division K -algebra D of degree n:

Question 1. When does gen(D) consist of a single class?

Question 2. When is gen(D) finite?

We note that since the opposite algebra Dop has the same maximal subfields as D , the genus gen(D) can reduce to a
single element only if [Dop] = [D], i.e. if D has exponent 2 in the Brauer group. On the other hand, as follows from the
theorem of Artin–Hasse–Brauer–Noether (AHBN), gen(D) does reduce to a single element for any algebra D of exponent 2
over a global field K (in which case D is necessarily a quaternion algebra).2 The following theorem (which for quaternion
algebras was established earlier in [16]) expands the class of fields with this property:

Theorem 1 (Stability Theorem). Let K be a field of characteristic �= 2.

(1) If K satisfies the following property:
(∗) if D and D ′ are central division K -algebras of exponent 2 having the same maximal subfields then D � D ′ (in other words,

for any D of exponent 2, |gen(D) ∩ 2Br(K )| = 1),
then the field of rational functions K (x) also satisfies (∗).

(2) If |gen(D)| = 1 for any central division K -algebra D of exponent 2, then the same is true for any central division K (x)-algebra of
exponent 2.

Corollary 2. Let k be either a finite field of characteristic �= 2 or a number field, and K = k(x1, . . . , xr) be a finitely generated purely
transcendental extension of k. Then for any central division K -algebra D of exponent 2 we have |gen(D)| = 1.

While Question 1 makes sense only for division algebras of exponent 2, Question 2 can be asked for arbitrary division
algebras. As above, it follows from (ABHN) that gen(D) is finite for any finite-dimensional central division algebra D over a
global field K . For fields other than global, the finiteness question was investigated in [10] for the genus gen′(D) defined
in terms of all finite-dimensional splitting fields (note that gen′(D) ⊂ gen(D)) for division algebras D of arbitrary prime
exponent p over the field K = k(x) of rational functions, with p �= char k. In particular, it was shown in [10] that if gen′(�)

is finite for any central division algebra � of exponent p over a field k, then gen′(D) is finite for any central division algebra
D of exponent p over K = k(x). At the same time, a direct generalization of the construction described in [8, §2] enables one
to provide an example of a quaternion division algebra D over an infinitely generated field K with infinite genus gen(D).
So, the following finiteness result seems to cover the most general situation:

Theorem 3. Let K be a finitely generated field (i.e., a finitely generated extension of its prime field). If D is a central division K -algebra
of exponent prime to char K , then gen(D) is finite.

2. The genus and the unramified Brauer group

We will now describe a general set-up that allows one to estimate the size of gen(D), and will then apply it to proving
Theorems 1 and 3. Given a discrete valuation v of K , we let OK ,v and K v denote its valuation ring and residue field,

1 At the end of this note, we will discuss a generalization of this notion to absolutely almost simple algebraic K -groups in which maximal subfields are
replaced with maximal K -tori. We observe in this respect that only separable maximal subfields of D give rise to maximal K -tori of G = SL1,D . So, in order
to make our definitions fully compatible, one should define gen(D) in terms of maximal separable subfields. In the current note, however, the degree n of
D will always be assumed to be coprime to the characteristic of K , so the issue of separability will not arise.

2 Indeed, (ABHN) implies that a quaternion algebra over a global field is uniquely determined by its set of ramified places; on the other hand, if two
quaternion division algebras have the same maximal subfields, they necessarily have the same ramified places.
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respectively. Fix an integer n > 1 (which will later be either the degree or the exponent of D) and suppose that V is a set
of discrete valuations of K that satisfies the following three conditions:

(A) For any a ∈ K × , the set V (a) := {v ∈ V | v(a) �= 0} is finite;
(B) There exists a finite subset V ′ ⊂ V such that the field of fractions of

O :=
⋂

v∈V \V ′
OK ,v

coincides with K ;
(C) For any v ∈ V , the characteristic of K v is prime to n.

(We note that if K is finitely generated, then (B) is an automatic consequence of (A).) Due to (C), for each v ∈ V one can
define the residue map

ρv : nBr(K ) → Hom
(
G(v),Z/nZ

)
,

where G(v) is the absolute Galois group of K v (cf., for example, [17, §10] or [18, Ch. II, Appendix]). As usual, a class
[A] ∈ nBr(K ) (or a central simple K -algebra A representing this class) is said to be unramified at v if ρv([A]) = 1, and
ramified otherwise. We let RamV (A) (or RamV ([A])) denote the set of all v ∈ V where A is ramified.

Proposition 4. If V satisfies conditions (A), (B), and (C), then for any [A] ∈ nBr(K ), the set RamV ([A]) is finite.

Proposition 5. Let D and D ′ be central division K -algebras such that [D] ∈ nBr(K ) and [D ′] ∈ gen(D) ∩ nBr(K ). Given v ∈ V , we let
χv and χ ′

v ∈ Hom(G(v),Z/nZ) denote the images under ρv of the classes [D] and [D ′], respectively. Then

Kerχv = Kerχ ′
v

for all v ∈ V . In particular, if D is unramified at v then so is D ′ .

We define the unramified part of nBr(K ) relative to V as follows:

nBr(K )V :=
⋂

v∈V

Kerρv .

The following statement relates the size of the genus to the size of nBr(K )V :

Theorem 6. Assume that nBr(K )V is finite. Then for any finite-dimensional central division K -algebra D of exponent n, the intersection
gen(D) ∩ nBr(K ) is finite, of size

∣∣gen(D) ∩ nBr(K )
∣∣ �

∣∣nBr(K )V
∣∣ · ϕ(n)r, with r = ∣∣RamV (D)

∣∣,
where ϕ is the Euler function. In particular, if D has degree n then

∣∣gen(D)
∣∣ �

∣∣nBr(K )V
∣∣ · ϕ(n)r .

We will now specialize to the situation where K = k(C) is the field of rational functions on a smooth absolutely irre-
ducible projective curve C over a field k. Set V to be the set of all geometric places of K , i.e. those discrete valuations of K
that are trivial on k. Then the corresponding unramified Brauer group nBr(K )V will be denoted by nBr(K )ur (this is precisely
the n-torsion subgroup of the Brauer group of the curve C ). Applying the techniques outlined above, in conjunction with
some considerations involving specialization, we obtain the following:

Theorem 7. Let n > 1 be an integer prime to char k. Assume that

• the set C(k) of rational points is infinite;
• |nBr(K )ur/ιk(nBr(k))| =: M < ∞, where ιk : Br(k) → Br(K ) is the canonical map.

Then

(1) if there exists N < ∞ such that

∣∣gen(�) ∩ nBr(k)
∣∣ � N
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for any central division k-algebra � of exponent n, then for any central division K -algebra D of exponent n we have
∣∣gen(D) ∩ nBr(K )

∣∣ � M · N · ϕ(n)r,

where r = |RamV (D)|;
(2) if gen(�) ∩ nBr(k) is finite for any central division k-algebra � of exponent n, then gen(D) ∩ nBr(K ) is finite for any central

division K -algebra D of exponent n.

One notable case where Theorem 7 applies is C = P1
k over an infinite field k (which we can assume without loss of

generality). It is well-known that in this case nBr(K )ur = ιk(nBr(k)) (cf. [9, Corollary 6.4.6]), i.e. one can take M = 1. Now, let
n = 2 and assume that k satisfies condition (∗) of Theorem 1, i.e. |gen(�) ∩ 2Br(k)| = 1 for any central division k-algebra �

of exponent 2. The latter means that one can take N = 1. We then obtain from Theorem 7 that |gen(D) ∩ 2Br(K )| = 1 for
any central division K -algebra D of exponent 2, proving part (1) of Theorem 1. The proof of part (2) is similar.

Furthermore, it follows from Theorem 6 that in order to prove Theorem 3, it is enough to establish the following:

Theorem 8. Let K be a finitely generated field, and let n > 1 be an integer coprime to char K . Then there exists a set V of discrete
valuations of K that satisfies conditions (A), (B) and (C), and for which the unramified Brauer group nBr(K )V is finite.

We originally proved Theorem 8 by a method related to the proof of the Weak Mordell–Weil Theorem (cf. [11, Ch. VI]),
which in principle can be used to obtain some estimates on the size of nBr(K )V , hence of gen(D) (see below). It was later
pointed out to us by J.-L. Colliot-Thélène [4] that a (nonconstructive) proof of the finiteness of nBr(K )V can be derived from
the following general statement:

Theorem 9. Let X be a scheme of finite type over U = Spec A, where A is either a finite field or the ring of S-integers in a number field
(with S finite). For any integer n invertible in A and any n-torsion constructible sheaf F on X, the étale cohomology groups Hi

ét(X,F)

are finite for all i � 0.

Given a finitely generated field K and an integer n > 1 prime to char K , we can pick a smooth affine integral scheme X
as in Theorem 9 with the field of rational functions K . Applying Theorem 9 to the étale sheaf associated with the group
scheme μn of nth roots of unity, we obtain the finiteness of H2

ét(X,μn). Then the Kummer sequence yields the finiteness
of nBr(X). On the other hand, it follows from the absolute purity conjecture proved by O. Gabber (see [7] for an exposition
of Gabber’s proof, and also [5, p. 153] and [3, discussion after Theorem 4.2] regarding the history of the question) that the
latter coincides with nBr(K )V , where V is the set of discrete valuations of K associated with the divisors of X , cf. [7], hence
the required fact (obviously, this V satisfies our conditions (A), (B) and (C)).

Since the proof of Theorem 9 is not readily available in the existing literature, we reproduce below an outline of the
argument kindly explained to us by J.-L. Colliot-Thélène in [4] (with his permission). Since for our purposes we only need
to consider the smooth case, in the situation where A is a finite field the required fact follows from Corollary 4.5 or
Corollary 5.5 in [12, Ch. VI] in conjunction with the Hochschild–Serre spectral sequence (cf. [12, Ch. III, Theorem 2.20]).

Let now A be a ring of S-integers in some number field k, where S is a finite set of places of k. Applying to the
structure morphism f : X → U Theorem 1.1 of the chapter “Théorèmes de finitude” in Deligne’s book [6, p. 233], we obtain
that the direct images Rq f∗F are constructible n-torsion sheaves on U . Combining Proposition 2.9 in [13, Ch. II] with
Theorem 8.3.19 in [14], we obtain that the groups H p

ét(U ,Rq f∗F) are finite for all p � 0. Then the Leray spectral sequence

H p
ét(U ,Rq f∗F) ⇒ H p+q

ét (X,F) [12, Ch. III, Theorem 1.18] shows that the groups Hi
ét(X,F) are all finite.

3. An example

We will now show how the methods involved in our original proof of Theorem 8 can actually be used to estimate the
size of the unramified Brauer group, and hence of the genus of a division algebra, in certain situations. Because of space
limitation, we will focus on the following example. Let k be a number field, and let E be an elliptic curve over k given by a
Weierstrass equation

y2 = f (x) where f (x) = x3 + αx2 + βx + γ .

Without loss of generality, we may assume that all the coefficients lie in the ring of integers Ok . We will also assume that
E splits over k, i.e. f has three roots in k. Let δ �= 0 be the discriminant of f , and set

S = V k∞ ∪ V k(2) ∪ V k(δ)

where V k denotes the set of all valuations of k, V k∞ the subset of archimedean valuations, and for a ∈ k× we set V k(a) =
{v ∈ V k \ V k∞ | v(a) �= 0}. Let

K := k(E) = k(x, y).
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For a nonarchimedean v ∈ V k , let ṽ denote its extension to F := k(y) given by

ṽ
(
am ym + · · · + a0

) = min
ai �=0

v(ai)

(cf. [1, Ch. VI, §10]). It can be shown that for v ∈ V k \ S , the valuation ṽ has a unique extension to K , which we will denote
by w = w(v). We now introduce the following set of discrete valuations of K :

V = V 0 ∪ V 1,

where V 0 is the set of all geometric places of K (i.e., those discrete valuations that are trivial on k), and V 1 consists of the
valuations w = w(v) for all v ∈ V k \ S . It is easy to see that V satisfies conditions (A), (B) and (C).

Theorem 10. The unramified Brauer group 2Br(K )V is finite of order dividing

2|S|−t · ∣∣2ClS(k)
∣∣2 · ∣∣U S(k)/U S(k)2

∣∣2
,

where t = c + 1 with c being the number of complex places of k, and ClS (k) and U S (k) are the class group and the group of units of
the ring of S-integers Ok(S), respectively.

Sketch of proof. We will use the following description of the 2-torsion 2Br(K )V 0 in the geometric Brauer group [2]: If E splits
over k, i.e. f (x) = (x−a)(x−b)(x−c) with a,b, c ∈ k, then 2Br(K )V 0 = 2Br(k)⊕ I , where I ⊂ 2Br(K )V 0 is a subgroup such that every
element of I is represented by a bi-quaternion algebra (r, x − b)K ⊗K (s, x − c)K for some r, s ∈ k× . Let [D] ∈ 2Br(K )V . Then [D] =
[�′ ⊗K �′′] where �′ = �0 ⊗k K for some central division k-algebra �0 of exponent 2, and �′′ = (r, x − b)K ⊗K (s, x − c)K

for some r, s ∈ k× . Using the corestriction map corK/F , one shows that �0 is unramified at all v ∈ V k \ S , and hence �′′ is
unramified at all w ∈ V 1. The latter implies that v(r), v(s) ≡ 0 (mod 2) for all v ∈ V k \ S . Let

�̃ = {
x ∈ k× ∣∣ v(x) ≡ 0 (mod 2) for all v ∈ V k \ S

}
,

and let � be the image of �̃ in k×/k×2. Then there is an exact sequence

0 → U S(k)/U S(k)2 → � → 2ClS(k) → 0

(cf. [11, §6.1]), hence |�| = |2ClS(k)| · |U S (k)/U S (k)2|.
Our previous discussion shows that there are at most |�|2 possibilities for �′′ . On the other hand, it follows from

(ABHN) that 2Br(k)V k\S has order 2|S|−t , which bounds the number of possibilities for �′ . Combining this with the above
computation of |�|, we obtain our claim. �
Example. Consider an elliptic curve E over Q given by y2 = x3 − x. We have δ = 4, so S = {∞,2}. Furthermore,

|S| − t = 1, ClS(Q) = 1 and U S(Q) = {±1} ×Z.

So, by Theorem 10, for K = Q(E) and the set V constructed above, the group 2Br(K )V has order dividing 2 · 42 = 32.
Combining this with Theorem 6, we obtain that for any quaternion algebra D over K , we have |gen(D)| � 32.

4. Concluding remarks

The questions considered in this note for division algebras can be analyzed in the broader context of arbitrary absolutely
almost simple simply connected (or adjoint) K -groups. In this set-up, one can define the genus of such a K -group G as
the collection of K -forms G ′ of G that have the same isomorphism classes of maximal K -tori (as a variation, one can base
the notion only on generic tori). We note that questions about groups in the same genus arise in the analysis of weak
commensurability of Zariski-dense subgroups which in turn is related to some problems in differential geometry, cf. [15]. In
view of our Theorem 3, it seems natural to propose the following:

Conjecture. Let G be an absolutely almost simple simply connected algebraic group over a finitely generated field K of characteristic
zero (or of “good” characteristic relative to G). Then there exists a finite collection G1, . . . , Gr of K -forms of G such that if H is a K -form
of G having the same isomorphism classes of maximal K -tori as G, then H is K -isomorphic to one of the Gi ’s.

Our proof of Theorem 3 yields in fact a proof of this conjecture for inner forms of type A .

Theorem 11. Let G be an absolutely almost simple simply connected algebraic group of inner type A over a finitely generated field K
whose characteristic is either zero or does not divide  + 1. Then the above conjecture is true for G.
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(In this regard, we note that if central simple K -algebras A1 = M1 (D1) and A2 = M2 (D2), where D1 and D2 are division
algebras, have the same maximal étale K -subalgebras, then 1 = 2 and D1 and D2 have the same maximal separable
subfields, cf. [16, Lemma 2.3].)

We plan to address the general case of the conjecture in our subsequent publications.
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