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In this note, we propose a modification of the NXFEM proposed in Hansbo and Hansbo
(2002) [4] for the elliptic interface problem. It leads to a robust method not only with
respect to the mesh-interface geometry, but also with respect to the diffusion parameters.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Dans cette note, nous proposons une modification de NXFEM proposée dans Hansbo et
Hansbo (2002) [4] pour le problème d’interface elliptique. Elle permet d’obtenir la robuste
à la fois par rapport à la géometrie du maillage coupé par l’interface et par rapport aux
paramètres de diffusion.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

The Nitsche extended finite element method (NXFEM) has been proposed in [4] for the interface problem, formulated
for simplicity with a bounded polygonal domain Ω , homogenous Dirichlet conditions, and f ∈ L2(Ω),

div(σ ) = f , σ = −k∇u, u|∂Ω = 0, (1)

where k is a discontinuous coefficient taking values kin and kex (�= kin) on two disjoint subdomains Ωin and Ωex, Ω =
Ωin ∪ Ωex. Although the mesh is not supposed to be aligned with the discontinuity of k, the method has excellent accuracy,
since it employs an appropriate finite element space for approximation of the non-regular solution of (1). This finite element
space is obtained by ‘doubling’ the local function space on all triangles cut by the interface Γ := Ωin ∩ Ωex, which is here
assumed to be polygonal. The discontinuity of the finite element space is then handled by a variant of Nitsche’s method,
making use of the interface conditions

[u] = gD and [σ · n] = gN on Γ, (2)

where gD ∈ C(Γ ) and gN ∈ L2(Γ ) are given functions, and n is the unit outer normal field of Ωin.
In [4] the stability of the method and optimal order error estimates are proven, supposing only that the solution is

piecewise in H2. The method is robust with respect to the geometry of the cut triangles. However, the original NXFEM is
not robust with respect to the coefficients kin, kex.
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In this note, we propose a modification of the Hansbo–Hansbo method, which is not only robust with respect to the cut
geometry but also with respect to the coefficients. This allows us in particular to use it as a fictitious domain method.

Other robust formulations of NXFEM are available, either employing additional meshes [5,1], or introducing stabiliza-
tion [2]. The method proposed here has some similarities with the stabilized approach, but avoids any additional terms.

2. The original Hansbo–Hansbo method

We denote by H a family of uniformly shape-regular meshes h consisting of triangles Kh . We define the set of cut cells
by Kin

h := {K ∩ Ωin: K ∈ Kh such that K ∩ Ωin �= ∅} and similarly for Kex
h . We then define the finite element space, with

C0(A) := {u ∈ C(A): u|∂Ω∩∂ A = 0},

Vh := {
vh ∈ L2(Ω), vh|Ωin ∈ C0(Ωin), vh|Ωex ∈ C0(Ωex), vh|M ∈ P 1(M) ∀M ∈ Kin

h ∪Kex
h

}
. (3)

The functions of Vh are discontinuous across the interface which is divided into the set of segments

SΓ
h := {K ∩ Γ : K ∈ Kh such that K ∩ Γ �= ∅}.

Let vh ∈ Vh . For a given side S ∈ SΓ
h we fix a unit normal nS once for all and define for x ∈ S

vh
in
S (x) := lim

ε↘0
vh(x − εnS), vh

ex
S (x) = lim

ε↘0
vh(x + εnS).

Next we define the jump and weighted mean for a weight α = (αin,αex) with αin + αex = 1 by

[u](x) := uin
S (x) − uex

S (x), {u}α(x) := αinuin
S (x) + αexuex

S (x).

The following formula, where α̂ = (αex,αin) readily follows from these definitions:

[uv] = [u]{v}α + {u}α̂[v]. (4)

We define the linear functional

l(vh) :=
∫
Ω

f vh +
∫

SΓ
h

gN {vh}α̂ −
∫

SΓ
h

gD ∂∗
n,k vh, (5)

and the symmetric bilinear form

ah(uh, vh) :=
∑

M∈Kin
h ∪Kex

h

∫
M

k∇uh · ∇vh −
∑

S∈SΓ
h

∫
S

([uh]∂∗
n,k vh + {∂n,kuh}αS [vh]

)
, (6)

where we have used the discrete fluxes ∂∗
n,k vh|S := {∂n,k vh}αS −γS [vh], ∂n,k vh := nT

S k∇vh , which depend on the two param-
eters αS and γS , constant on each segment S . Their precise choice is crucial for stability and robustness of the method. The
method is consistent for any choice of parameters.

Lemma 2.1. Let u be a smooth solution to (1), (2). Then for any vh ∈ Vh, we have ah(u, vh) = l(vh).

Proof. By the integration by parts formula

∑
M∈Kin

h ∪Kex
h

∫
M

k∇u · ∇vh = −
∫
Ω

div(k∇u)vh +
∑

S∈SΓ
h

∫
S

[∂n,kuvh],

(4), and the second interface condition (2) we have

[∂n,kuvh] = {∂n,ku}α[vh] + [∂n,ku]{vh}α̂ = {∂n,ku}α[vh] + gN{vh}α̂ .

Together with the first interface condition (2) this yields

ah(u, vh) =
∫
Ω

f vh +
∫

SΓ
h

gN {vh}α̂ −
∫

SΓ
h

gD∂∗
n,k vh = l(vh). �

The choice of the parameters αS and γS is therefore guided by the stability analysis. We denote by ‖ · ‖A the L2(A)-
norm (suppressing the subscript in case A : Ω) and by ∇h the piecewise gradient operator. We introduce ‖vh‖2

h,Γ
:=∑

Γ γS‖[vh]‖2 and the norm ‖|vh|‖2 := ‖k∇h vh‖2 + ‖vh‖2 . We note that ah(uh, uh) = ‖|uh|‖2 − 2
∫ [uh]{∂n,kuh}αS .
S∈Sh h h,Γ h S
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Fig. 1. Cut triangle.

The last term is bounded with the help of Young’s inequality as∫
S

[uh]{∂n,kuh}αS � 1

4
‖uh‖2

h,Γ +
∑

S∈SΓ
h

γ −1
S

∥∥{∂n,kuh}αS

∥∥2
S .

Therefore, the coercivity of ah depends on an estimate of the type
∑

S∈SΓ
h

γ −1
S ‖{∂n,kuh}αS ‖2

S � 1
4 ‖k∇uh‖2. Let S ∈ SΓ

h be

a side cutting the element K = K in ∪ K ex (see Fig. 1). The choice of parameters in the Hansbo–Hansbo method is with a
mesh- and geometry-independent constant γ̂ > 0

αin
S = |K in|

|K | , αex
S = |K ex|

|K | , γS := γ̂ max

{
kin

|K in|
|K | ,kex

|K ex|
|K |

} |S|
|K | . (7)

The stability, independent of the cut geometry, is shown as follows. Since the gradient of uh is constant on each cut element,
we have for example for K in

∫
S

|∂nuh|2K in � |S|
|K in|

∫

K in

|∇uh|2. (8)

Using that ∇uh is constant on each cell, it follows that

1

2

∫
S

{∂n,kuh}2
αS

�
(
αin

S

)2
∫
S

k2
in|∂nuh|2K in + (

αex
S

)2
∫
S

k2
ex|∂nuh|2K ex �

(
αin

S

)2 kin|S|
|K in|

∫

K in

kin|∇uh|2

+ (
αex

S

)2 kex|S|
|K ex|

∫
K ex

kex|∇uh|2 � kin|S||K in|
|K |2

∫

K in

kin|∇uh|2 + kex|S||K ex|
|K |2

∫
K ex

kex|∇uh|2 � γS

γ̂

∫
K

k|∇uh|2.

This implies the stability of the method with respect to the cut geometry. Optimal order error estimates are derived
in [4].

3. A robust method

Let S ∈ SΓ
h be a side cutting the element K = K in ∪ K ex. We define with a mesh- and geometry-independent constant

γ̂ > 0

αin
S = kex|K in|

kex|K in| + kin|K ex| , αex
S = kin|K ex|

kex|K in| + kin|K ex| , γS := γ̂
kinkex|S|

kex|K in| + kin|K ex| . (9)

The proposed method then coincides on meshes matching the interface with the harmonically-weighted discontinuous
Galerkin method of [3]. Then, noting that α

in/ex
S � 1, we have

1

2

∫
S

{∂n,kuh}2
αS

�
(
αin

S

)2
∫
S

k2
in|∂nuh|2K in + (

αex
S

)2
∫
S

k2
ex|∂nuh|2K ex

�
(
αin

S

)2 kin|S|
|K in|

∫

K in

kin|∇uh|2 + (
αex

S

)2 kex|S|
|K ex|

∫
K ex

kex|∇uh|2

� kinkex|S|
kex|K in| + kin|K ex|

∫

K in

kin|∇uh|2 + kinkex|S|
kex|K in| + kin|K ex|

∫
K ex

kex|∇uh|2 � γS

γ̂

∫
K

k|∇uh|2.

This estimate leads to uniform stability with respect to the diffusion parameters and cut-cell-geometry. Following the lines
of analysis of [4], we can derive optimal-order error estimates of the modified NXFEM.
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Fig. 2. Interface position (zoom in the mesh, left) and comparison of the energy norm error of the two methods (right).

Fig. 3. Comparison of the two methods for varying position of the interface: error in flux (left) and jump in flux (right).

4. Numerical test

We consider a problem on Ω = ]0,1[× ]0,1[ with a straight interface Γξ := {ξ}× [0,1]. In order to study the robustness
of the method we move the interface from ξ0 = 0.49999 to ξ1 = 0.6249 and choose k1 = 0.1 and k2 = 10 000, see Fig. 2 for
a zoom, on a fixed mesh not aligned with the interface. The data are chosen such that the function defined by u = x2/k1 for
x � ξ and u = (x2 − ξ2)/k2 + ξ2/k1 else is an exact solution. This requires some trivial modifications to take into account
the non-homogenous Dirichlet boundary condition.

In Fig. 2 we compare the error in energy norm and the jump of the discrete solution for the two methods. Since the
exact solution depends on the interface position, both methods show a slightly increasing error when the interface moves
to the right. Both methods show a robust behavior and the differences in energy error are relatively small, but increase
when the interface approaches a mesh line.

Fig. 3 shows the L2(Γ )-error in the flux, ‖∂nk u − ∂∗
n,kuh‖S and the jump of the discrete flux ‖[∂n,kuh]‖S . The difference

between the two methods becomes quite apparent. If the interface approaches a mesh line, the original NXFEM leads to
large errors, in contrast to the modifies one.
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