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For decades, a vast amount of research effort in experimental engineering together with
numerical simulations has been devoted to the study of the plastic deformation and total
deformation of elasto-perfectly-plastic (EPP) oscillators. All of these results reveal that both
the plastic and total deformations of an EPP oscillator, being excited by a white noise, have
variances that increase linearly with time and share a common asymptotic growth rate.
Before our present work, there was no apparent theoretical justification on this empirical
observation. In this paper, we use a stochastic variational inequality (SVI) for the model-
ing of the evolution between the velocity of an EPP oscillator and its non-linear restoring
force; and this modeling has already been justified in some previous works of the authors.
By introducing the novel notion of long cycle behavior of the Markovian solution of the
corresponding SVI, we first establish a mathematical explanation for the empirical obser-
vation and characterize the mentioned asymptotic growth rate in terms of certain stopping
times read off from the trajectory; secondly, we show an effective method on computing
this asymptotic growth rate, which has been a long lasting challenging question to engi-
neers. Finally numerical simulation is provided to illustrate the notable agreement between
our theoretical prediction and empirical studies in the engineering literature.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Des résultats expérimentaux en sciences de l’ingénieur ont montré que, pour un oscillateur
élasto-plastique-parfait excité par un bruit blanc, la déformation plastique et la déforma-
tion totale ont une variance, qui asymptotiquement, croît linéairement avec le temps avec
le même coefficient. Dans ce travail, nous prouvons ce résultat et nous caractérisons le
coefficient de dérive. Notre étude repose sur une inéquation variationnelle stochastique
gouvernant l’évolution entre la vitesse de l’oscillateur et la force de rappel non-linéaire.
Nous définissons alors le comportement en cycles longs du processus de Markov solution
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de l’inéquation variationnelle stochastique qui est le concept clé pour obtenir le résul-
tat. Une question importante en sciences de l’ingénieur est de calculer ce coefficient. Les
résultats numériques confirment avec succès notre prédiction théorique et les études em-
piriques faites par les ingénieurs.

© 2012 Published by Elsevier Masson SAS on behalf of Académie des sciences.

Version française abrégée

Dans cet article, nous étudions la variance de l’oscillateur élastique-parfaitement-plastique (EPP) excité par un bruit blanc.
La dynamique de l’oscillateur s’exprime à l’aide d’une équation à mémoire (voir (1)–(2)). A. Bensoussan et J. Turi [1] ont
montré que la relation entre la vitesse et la composante élastique satisfait une inéquation variationnelle stochastique (voir
(SVI)). Dans ce cadre, nous introduisons les cycles long indépendants (définis plus loin) et nous justifions qu’ils permettent
de caractériser la variance de la déformation plastique et de la déformation totale (voir (4)).

1. Introduction

In the civil engineering literature, elasto-perfectly-plastic (EPP) oscillators are frequently employed for the estimation of
the critical time of failure of mechanical structures subject to random vibrations. This EPP oscillator is essentially a simple
one-dimensional model, which is good enough to describe the elasto-plastic behavior of a board class of commonly found
mechanical structures whose total deformations mainly response to their own first modal deformations.

The main difficulty of studying these systems comes from a high frequency of repeating visits to plastic phases in a small
time interval in a recurrent manner. A plastic deformation is produced when the stress of the structure reaches beyond an
elastic limit. The dynamics of the EPP-oscillator has memory, which is commonly described in the engineering literature by
a process x(t), displacement of the oscillator, that takes into account of the underlying hysteresis. We now interest in studying
the problem

ẍ + c0 ẋ + Ft = ẇ (1)

with initial conditions on its displacement and velocity given x(0) = 0 and ẋ(0) = 0 respectively. Here c0 > 0 is the viscous
damping coefficient, k > 0 is the stiffness, w is a Wiener process. The restoring force Ft � F(x(s),0 � s � t) is a non-linear
functional which depends on the whole trajectory {x(s): 0 � s � t} up to time t . The plastic deformation denoted by �(t)
at time t can be recovered from the pair (x(t),Ft) by using the following relationship:

Ft =
⎧⎨
⎩

kY if x(t) = Y + �(t),

k(x(t) − �(t)) if x(t) ∈ (−Y + �(t), Y + �(t)),

−kY if x(t) = −Y + �(t),

(2)

where �(t) = ∫ t
0 1{|Ft |=kY } dx(s) and Y is the elasto-plastic bound. Karnopp and Scharton [4] proposed a model with a sepa-

ration between elastic and plastic phases. In particular, they introduced a fictitious variable (or called the elastic component)
z(t) � x(t)−�(t), and also noticed the simple fact that during the transition period between two consecutive plastic phases,
z(t) behaves like a linear oscillator. In addition, both experimental and computational works had been done by engineers
in [3], in which they revealed that total deformation has a variance that increases linearly with time:

lim
T →∞

σ 2(x(T ))

T
= σ 2, (3)

where σ 2 ∈R
+ .

In a recent work by the first author together with J. Turi in [1], a proper mathematical framework for modeling elasto-
plastic oscillators with noise (to be described as below) has been formulated in terms of stochastic variational inequalities
(SVI); indeed, that is the inequality governing the relationship between the velocity y(t) and the elastic component z(t):

dy(t) = −(
c0 y(t) + kz(t)

)
dt + dw(t),

(
dz(t) − y(t)dt

)(
φ − z(t)

)
� 0, ∀|φ|� Y , |z(t)| � Y . (SVI)

The plastic deformation �(t) can be recovered by
∫ t

0 y(s)1{|z(s)|=Y } ds.
In this Note, our objective is to provide a mathematical justification on the limiting behavior in (3) together with its

exact mathematical characterization based on (SVI). We first introduce the notion of long cycles by identifying a sequence
of independent components in the trajectory.

1.1. Long cycles

Denote τ0 � inf{t > 0: y(t) = 0 and |z(t)| = Y }, and δ � sign(z(τ0)) which labels the first hitting of (y(t), z(t)) to the
boundary. Define θ0 � inf{t > τ0: y(t) = 0 and z(t) = −δY }. Recursively, we also define, for each n � 0:
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τn+1 � inf
{

t > θn: y(t) = 0 and z(t) = δY
}
,

θn+1 � inf
{

t > τn+1: y(t) = 0 and z(t) = −δY
}
.

With these definitions of τn ’s and θn ’s in mind, the n-th long cycle is defined (resp. the first part of the cycle and the second
part of the cycle) as the component of trajectory only defined on the interval [τn, τn+1) ([τn, θn+1) and [θn+1, τn+1)). Due to
its Markovian nature, at every instant τn (and beyond up to τn+1), the process (y(t), z(t)) restarts anew as if it were at τ0
(and before τ1). Moreover, there are two types of cycles depending on the sign of δ. The family of stopping times {τn, n � 0}
represents the commencement times of long cycles. It is worth to remark that the plastic and total deformations are the
same on a long cycle since

τ1∫
τ0

y(t)dt =
τ1∫

τ0

y(t)1{|z(s)|=Y } dt +
τ1∫

τ0

y(t)1{|z(s)|<Y } dt

and that

τ1∫
τ0

y(t)1{|z(s)|<Y } dt = z(τ1) − z(τ0) = 0.

The following theorem is the main result in this Note:

Theorem 1.1 (Characterization of the variance related to the plastic/total deformation). Using the notations as above, we have the
characterization,

lim
T →∞

σ 2(x(T ))

T
= E(

∫ τ1
τ0

y(t)dt)2

E(τ1 − τ0)
. (4)

2. Supporting numerical evidence

In this section, we provide computational results of formula (4) which confirm our theoretical results. A C code has
been written for simulating (y(t), z(t)) where, as explained in Section 4, without loss of generality we can suppose that
(y(0), z(0)) = (0,−Y ) or (0, Y ) with equal probability 1/2. See [2] for the direct algorithmic numerical scheme. Let T > 0,
N ∈ N and {tn = nδt: 0 � n � N} where δt = T

N . To compute the left-hand side of (4), we consider MC ∈ N and we generate
MC numerical solutions of (SVI) {yi(t): 0 � t � T and 1 � i � MC} up to the time T . By the law of large numbers, we can
approximate 1

T Ex(T )2 by

XMC � 1

T

1

MC

MC∑
i=1

(
N∑

i=1

yi(tn)δt

)2

and also 1
T 2 Ex(T )4 by

X2
MC � 1

T 2

1

MC

MC∑
i=1

(
N∑

i=n

yi(tn)δt

)4

.

Define sX �
√

X2
MC − (XMC)2, we also know by the central limit theorem that

1

T
Ex(T )2 ∈

[
XMC − 1.96sX√

MC
, XMC + 1.96sX√

MC

]

at the 95% confidence level. Similarly, to compute the right-hand side of (4), we generate MC numerical long cycles. For
each trajectory {yi(t), t � 0}, we consider Ni

c the required number of time step to obtain a completed cycle. Define

δMC � 1

MC

MC∑
i=1

( Ni
c∑

n=0

yi(tn)δt

)2

,

δ2
MC � 1

MC

MC∑( Ni
c∑

yi(tn)δt

)4

,

i=1 n=0
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Table 1
Monte Carlo simulations to compare numerical solution of the left- and right-hand sides of (4), T = 500, δt = 10−4 and MC = 10 000.

c0 = 1, k = 1

Y XMC , T = 500 δMC
τMC

τMC Relative error %

0.1 0.807±0.031 0.815±0.072 6.61±0.11 1.3
0.2 0.649±0.026 0.616±0.050 8.74±0.13 5.1
0.3 0.493±0.020 0.470±0.037 10.45±0.16 4.7
0.4 0.361±0.014 0.353±0.028 12.12±0.18 2.2
0.5 0.266±0.011 0.257±0.020 13.80±0.21 3.4

τMC � 1

MC

MC∑
i=1

Ni
cδt,

τ 2
MC � 1

MC

MC∑
i=1

(
Ni

cδt
)2

,

sδ �
√

δ2
MC − (δMC)2 and

sτ �
√

τ 2
MC − (τMC)2.

We also know that

δMC

τMC
∈

[ δMC − 3sδ√
MC

τMC + 3sτ√
MC

,
δMC + 3sδ√

MC

τMC − 3sτ√
MC

]

at the 95% confidence level. In Table 1, we illustrate a comparison of the results obtained for XMC and δMC
τMC

where T = 500,

δt = 10−4 and MC = 10 000.

Remark 2.1. From a point of view of numerical simulation, the behavior in long cycles is critical and crucial. Indeed, the
computation of the left-hand side of (4) is much more time-consuming in comparison with that of the right-hand side (see
the τMC-column of Table 1).

Our proof relies on solving two non-local partial differential equations related to long cycles.

3. The issue of long cycles and plastic deformations

Notation 1. D � R × (−Y ,+Y ), D+ � (0,∞) × {Y }, D− � (−∞,0) × {−Y }, and the differential operators Aζ � − 1
2 ζyy +

(c0 y +kz)ζy − yζz , B+ζ �− 1
2 ζyy + (c0 y +kY )ζy , B−ζ � − 1

2 ζyy + (c0 y −kY )ζy , where ζ is a smooth enough function on D .

Let f be a bounded measurable function, we want to solve for v+( f ) and v−( f ) such that

Av+( f ) = f (y, z) in D, B+v+( f ) = f (y, Y ) in D+, B−v+( f ) = f (y,−Y ) in D−, (P v+ )

with the non-local boundary conditions v+( f )(y, Y ) being continuous in y and v+( f )(0−,−Y ) = 0, and

Av−( f ) = f (y, z) in D, B+v−( f ) = f (y, Y ) in D+, B−v−( f ) = f (y,−Y ) in D−, (P v− )

with the non-local boundary conditions v−( f )(0+, Y ) = 0 and v−( f )(y,−Y ) being continuous in y. According to the
Feynman–Kac formula, the functionals

v+( f ) = E

( θ0∫
τ0

f
(

y(s), z(s)
)

ds|z(τ0) = Y

)

and

v−( f ) = E

( θ0∫
τ0

f
(

y(s), z(s)
)

ds|z(τ0) = −Y

)
;

and functionally, they are regarded as half long cycles in the operator sense. In addition, we define π+(y, z) and π−(y, z) by

Aπ+ = 0 in D, π+(y, Y ) = 1 in D+, π+(y,−Y ) = 0 in D−, (Pπ+ )



A. Bensoussan et al. / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 853–859 857
and

Aπ− = 0 in D, π−(y, Y ) = 0 in D+, π−(y,−Y ) = 1 in D−. (Pπ− )

Note that π+ + π− = 1, so the existence and uniqueness of a bounded solution (Pπ+ ) and (Pπ− ) are clear.

Proposition 3.1. π+(0+,−Y ) > 0 and π−(0−, Y ) > 0.

Proof. We only check the first inequality, the second can be shown similarly. Without loss of generality, we assume that
4k > c2

0, and we now consider the elastic process (y yz(t), zyz(t)):

zyz(t) = e
−c0t

2

{
z cos (ωt) + 1

ω

(
y + c0

2
z

)
sin (ωt)

}
+ 1

ω

t∫
0

e− c0
2 (t−s) sin

(
ω(t − s)

)
dw(s),

y yz(t) = −c0

2
zyz(t) + e− c0t

2

{
−ωz sin (ωt) +

(
y + c0

2
z

)
cos (ωt)

}
+

t∫
0

e− c0
2 (t−s) cos

(
ω(t − s)

)
dw(s)

where ω �
√

4k−c2
0

2 . Set τyz � inf{t > 0: |zyz(t)| � Y }, we have π+(y, z) = P(zyz(τyz) = Y ) and π−(y, z) = P(zyz(τyz) = −Y ).
We next claim that

π−(y, z) → 1 as y → −∞, z ∈ [−Y , Y ]. (5)

Indeed, ∀t with 0 < t < π
ω we have zyz(t) → −∞, as y → −∞ a.s. Therefore ∀t with 0 < t < π

ω , zyz(t) < −Y a.s. for
−y sufficiently large. Hence, τyz < t a.s. for −y sufficiently large. Therefore a.s. lim supy→−∞ τyz < t . Since t is arbitrary,
necessarily a.s. τyz → 0, as y → −∞ which implies (5). Moreover, π−(y, Y ) cannot have a minimum or a maximum at
any finite y < 0; it is then monotone and since π−(−∞, Y ) = 1, it is monotonic decreasing. It follows that π−(0−, Y ) < 1,
which cannot be 0. Otherwise, π−(y, Y ) is continuous at y = 0, and (0, Y ) is a point of minimum of π−(y, z) and we must
have πyy(0−, Y ) > 0. Since for y < 0, π−

y (y, Y ) < 0, so from the equation of π− we get lim supy→0− π−
yy(y, Y ) � 0 which is

not possible since (0, Y ) is a minimum. �
We next define η(y, z) by

Aη = f (y, z) in D, η(y, Y ) = 0 in D+, η(y,−Y ) = 0 in D− (Pη)

with the local boundary conditions η(0+, Y ) = 0 and η(0−,−Y ) = 0. For any bounded measurable f , problem (Pη) attains
a unique bounded measurable solution. Define ϕ+(y; f ) as the solution of the following:

−1

2
ϕ+,yy + (c0 y + kY )ϕ+,y = f (y, Y ), y > 0, ϕ+(0; f ) = 0. (6)

One can apply integrating factors and conclude that

ϕ+(y; f ) = 2

∞∫
0

dξ exp
(−(

c0ξ
2 + 2kY ξ

)) ξ+y∫
ξ

f (ζ ; Y )exp
(−2c0ξ(ζ − ξ)

)
dζ, y � 0. (7)

Also define ψ+(y, z; f ) by:

Aψ+ = 0, in D, ψ+(y, Y ) = ϕ+(y; f ), in D+, ψ+(y,−Y ) = 0, in D−. (Pψ+ )

Similarly, we also define ϕ−(y; f ) and ψ−(y, z; f ) by

−1

2
ϕ−,yy + (c0 y − kY )ϕ−,y = f (y,−Y ), y < 0, ϕ−(0; f ) = 0, (8)

which leads to

ϕ−(y; f ) = 2

∞∫
0

dξ exp
(−(

c0ξ
2 − 2kY ξ

)) −ξ∫
y−ξ

f (ζ ;−Y )exp
(−2c0ξ(ζ − ξ)

)
dζ, y � 0,

and

Aψ− = 0 in D, ψ−(y, Y ) = 0 in D+, ψ−(y,−Y ) = ϕ−(y; f ) in D−. (Pψ− )

We can state the following proposition:
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Proposition 3.2. The solutions of (P v+ ) and (P v− ) are given by

v+( f )(y, z) = η(y, z; f ) + ψ+(y, z; f ) + ψ−(y, z; f ) + η(0−, Y ; f ) + ψ+(0−, Y ; f ) + ψ−(0−, Y ; f )

π−(0−, Y )
π+(y, z)

and

v−( f )(y, z) = η(y, z; f ) + ψ+(y, z; f ) + ψ−(y, z; f )

+ η(0+,−Y ; f ) + ψ+(0+,−Y ; f ) + ψ−(0+,−Y ; f )

π+(0−, Y )
π−(y, z).

Proof. Direct checking. �
4. Complete cycle

Firstly, let us check that E[x(t)] = 0 and hence we simply have σ 2(x(t)) = E[x2(t)]. Indeed, upon the symmetry of the
underlying (SVI) and the choice of initial conditions y(0) = 0, z(0) = 0, the processes (y(t), z(t)) and −(y(t), z(t)) possess
the same law. Then,

E
[
x(t)

] = E

[ t∫
0

y(s)ds

]
= −E

[ t∫
0

y(s)ds

]
= 0.

In addition, (y(τ1), z(τ1)) is equal to (0,−Y ) or (0, Y ) with equal probability 1/2; accordingly, without loss of generality, we
suppose that (y(0), z(0)) = (0,−Y ) or (0, Y ) with equal probability 1/2. Let us treat the case that y(0) = 0 and z(0) = Y .
So, τ0 = 0 and θ1 = inf{t > 0: z(t) = −Y and y(t) = 0}. We can assert that Eθ1 = v+(1)(0, Y ) hence θ1 < ∞ a.s. since η is
bounded. Define τ1 = inf{t > θ1: z(t) = Y and y(t) = 0}, then

Eτ1 = v+(1)(0, Y ) + v−(1)(0,−Y ) = 2v+(1)(0, Y )

by symmetry. At time τ1 the state of the system is again (0, Y ). So the sequence {τn: n � 0} is such that τn < τn+1 and in
the interval (τn, τn+1) we have a cycle probabilistically identical to that in (0, τ1). Consider the random integral

∫ τ1
0 y(t)dt .

We have

E

τ1∫
0

y(t)dt = E

θ1∫
0

y(t)dt +E

τ1∫
θ1

y(t)dt = v+(y)(0, Y ) + v−(y)(0,−Y ).

On the other hand, for any antisymmetric f , i.e. f (−y,−z) = − f (y, z), we have v+( f )(0, Y ) = −v−( f )(0,−Y ); in par-
ticular, y is antisymmetric, and so E

∫ τ1
0 y(t)dt = 0. Now, upon mutual independence of components over disjoint time

intervals,

E

( τn∫
0

y(t)dt

)2

= E

(
n−1∑
j=0

τ j+1∫
τ j

y(t)dt

)2

= nE

( τ1∫
0

y(t)dt

)2

.

Then

E(
∫ τn

0 y(t)dt)2

Eτn
= E(

∫ τ1
0 y(t)dt)2

Eτ1
.

Let T > 0 and NT with τNT � T < τNT +1 , NT = 0 if τ1 > T , and define τ0 = 0 and further calculations lead to the following

E(
∫ τNT +1

0 y(t)dt)2

EτNT +1
= E(

∫ τ1
0 y(t)dt)2

Eτ1
.

Next, we can justify that

lim
T →∞

1

T
E

( T∫
0

y(t)dt

)2

= lim
T →∞

1

T
E

( τNT +1∫
0

y(t)dt

)2

, (9)

and that we have a lower bound and an upper bound for the right-hand side of (9), that is



A. Bensoussan et al. / C. R. Acad. Sci. Paris, Ser. I 350 (2012) 853–859 859
E(
∫ τ1

0 y(t)dt)2

Eτ1
� 1

T
E

( τNT +1∫
0

y(t)dt

)2

�
(

1 + Eτ1

T

)
E(

∫ τ1
0 y(t)dt)2

Eτ1
.

Therefore limT →∞ 1
T E(

∫ T
0 y(t)dt)2 = E(

∫ τ1
0 y(t)dt)2

Eτ1
. The proof is done.

5. Conclusion

In this Note, we have introduced a probabilistic formula for the asymptotic growth rate of the variance of the total (or
plastic) deformation related to an elasto-perfectly-plastic oscillator with noise. Moreover, our formula allows fast probabilis-
tic simulations to compute this asymptotic rate since the mean time durations of long cycle are very short (see the third
column of Table 1).

In our next work, we will provide a purely analytic formula for the term involving a square in the expectation at the
numerator in the right hand of (4). Indeed, there is no direct PDE representation. Then, we will overcome this difficulty by
proposing a non-local PDE describing the Fourier transform of the plastic deformation.
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