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In this Note, we consider the remaining cases of Hebey–Vaugon conjecture. Assuming the
positive mass theorem, we give a positive answer to this conjecture.
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r é s u m é

Dans cette Note, on considère les cas restants de la conjecture de Hebey–Vaugon. En
admettant la théorème de la masse positive, on donne une réponse positive à cette
conjecture.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let (M, g) be a compact Riemannian manifold of dimension n � 3. Denote by I(M, g), C(M, g) and R g the isometry
group, the conformal transformations group and the scalar curvature, respectively. Let G be a subgroup of the isometry
group I(M, g). The equivariant Yamabe problem can be formulated as follows: in the conformal class of g, there exists a G-
invariant metric with constant scalar curvature. Assuming the positive mass theorem and the Weyl vanishing conjecture (for
more details on the subject, see [5,10] and the references therein), E. Hebey and M. Vaugon [4] proved that this problem
has solutions. Moreover, they proved that the infimum of Yamabe functional

I g(ϕ) =
(∫

M

|∇ϕ|2 + n − 2

4(n − 1)
R gϕ

2 dv

)
‖ϕ‖−2

2n
n−2

, (1)

over G-invariant nonnegative functions is achieved by a smooth positive G-invariant function. This function is a solution of
the Yamabe equation, which is the Euler–Lagrange equation of I g :

�gϕ + n − 2

4(n − 1)
R gϕ = μϕ

n+2
n−2 .

One of the consequences of these results is that the following conjecture due to Lichnerowicz [7] is true:

Lichnerowicz conjecture. For every compact Riemannian manifold (M, g) which is not conformal to the unit sphere Sn endowed with
its standard metric gs, there exists a metric g̃ conformal to g for which I(M, g̃) = C(M, g), and the scalar curvature R g̃ is constant.

The classical Yamabe problem, which consists of finding a conformal metric with constant scalar curvature on a compact
Riemannian manifold, is a particular case of the equivariant Yamabe problem (it corresponds to G = {id}). This problem
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was completely solved by H. Yamabe [13], N. Trudinger [12], T. Aubin [1] and R. Schoen [11]. The main idea to prove the
existence of positive minimizers for I g is to show that if (M, g) is not conformal to the sphere endowed with its standard
metric, then

μ(g) := inf
C∞(M)

I g(ϕ) <
1

4
n(n − 2)ω

2/n
n , (2)

where ωn is the volume of the unit sphere Sn .
T. Aubin [1] proved (2) in some cases by constructing a test function uε satisfying I g(uε) < 1

4 n(n−2)ω
2/n
n . He conjectured

that (2) always holds except for the sphere. R. Schoen constructed another test function which involves the Green function
of the conformal Laplacian �g + n−2

4(n−1)
R g . Using the positive mass theorem, R. Schoen proved (2) for all compact manifolds

which are not conformal to (Sn, gs). The solution of the Yamabe problem follows.
Later, E. Hebey and M. Vaugon [4] showed that we can generalize (2) for the equivariant case as follows:
Denote by O G(P ) the orbit of P ∈ M under G and by card O G(P ) its cardinality. Let C∞

G (M) be the set of smooth
G-invariant functions and

μG(g) := inf
C∞

G (M)
I g(ϕ).

Following E. Hebey and M. Vaugon [3,4], we define the integer ω(P ) at a point P as

ω(P ) = inf
{

i ∈ N/
∥∥∇ i W g(P )

∥∥ �= 0
} (

ω(P ) = +∞ if ∀i ∈ N,
∥∥∇ i W g(P )

∥∥ = 0
)
.

Hebey–Vaugon conjecture. Let (M, g) be a compact Riemannian manifold of dimension n � 3 and G be a subgroup of I(M, g). If
(M, g) is not conformal to (Sn, gs) or if the action of G has no fixed point, then the following inequality holds

μG(g) <
1

4
n(n − 2)ω

2/n
n

(
inf

Q ∈M
card O G(Q )

)2/n
. (3)

E. Hebey and M. Vaugon showed that if this conjecture holds, then it implies that the equivariant Yamabe problem has
minimizing solutions and the Lichnerowicz conjecture is also true. Notice that if G = {id}, then this conjecture corresponds
to (2).

Assuming the positive mass theorem, E. Hebey and M. Vaugon [4] proved the following:

Theorem 1 (E. Hebey and M. Vaugon). The Hebey–Vaugon conjecture holds if at least one of the following conditions is satisfied:

1. The action of G on M is free.
2. 3 � dim M � 11.
3. There exists a point P ∈ M with finite minimal orbit under G such that ω(P ) > (n − 6)/2 or ω(P ) ∈ {0,1,2}.

The main result of this note is the following:

Theorem 2. If there exists a point P ∈ M such that ω(P )� (n − 6)/2, then

μG(g) <
1

4
n(n − 2)ω

2/n
n

(
card O G(P )

)2/n
. (4)

Note that if we assume the positive mass theorem, then Theorem 1 and Theorem 2 implies that the Hebey–Vaugon
conjecture holds. In particular, it holds if M is a spin manifold.

The proof of Theorem 2 doesn’t require the positive mass theorem. If card O G(Q ) = +∞ for all Q ∈ M , then (3) holds.
So we have to consider only the case when there exists a point in M with finite orbit. From now on, we suppose that P ∈ M
is contained in a finite orbit and ω(P ) � n−6

2 . The assumption ω(P )� n−6
2 deletes the case (M, g) is conformal to (Sn, gs).

In order to prove Theorem 2, we construct from the function ϕε,P defined below a G-invariant test function φε such that

I g(φε) <
1

4
n(n − 2)ω

2/n
n

(
card O G(P )

)2/n
. (5)

Let us recall the construction in [9] of ϕε,P . Let {x j} be the geodesic normal coordinates in the neighborhood of P and
define r = |x| and ξ j = x j/r. Without loss of generality, we suppose that det g = 1 + O (rN ), with N > 0 sufficiently large (for
the existence of such coordinates for a G-invariant conformal class, see [4,6]).

ϕε,P (Q ) =
{

(1 − rω(P )+2 f (ξ))
[(

ε
r2+ε2

) n−2
2 − (

ε
δ2+ε2

) n−2
2

]
if Q ∈ B P (δ);
0 if Q ∈ M − B P (δ),
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where r = d(Q , P ) is the distance between P and Q , and B P (δ) is the geodesic ball of center P and radius δ fixed suffi-
ciently small. f is a function depending only on ξ (defined on Sn−1), chosen such that

∫
Sn−1 f dσ = 0.

Let R̄ be the leading part in the Taylor expansion of the scalar curvature R g in a neighborhood of P and μ(P ) is its
degree. Hence,

R g(Q ) = R̄ + O
(
rμ(P )+1) and R̄ = rμ(P )

∑
|β|=μ(P )

∇β R g(P )ξβ .

We summarize some properties of R̄ in the following proposition:

Proposition 3.

1. R̄ is a homogeneous polynomial of degree μ(P ) and is invariant under the action of the stabilizer group of P .
2. We always have μ(P )�ω(P ).
3. If μ(P )�ω(P ) + 1, then

∫
Sn−1(r) R dσ < 0 for r > 0 sufficiently small.

4. If μ(P ) = ω(P ), then there exist eigenfunctions ϕk of the Laplacian on Sn−1 such that the restriction of R̄ to the sphere is given
by R̄|Sn−1 = ∑q

k=1 νkϕk, where q � [ω(P )/2], �sϕk = νkϕk and νk = (ω − 2k + 2)(n + ω − 2k) are the eigenvalues of �s with
respect to the standard metric gs of Sn−1 .

Sketch of proof. Since the scalar curvature is invariant under the action of the isometry group I(M, g), R̄ is invariant under
the action of the stabilizer of P . The second statement of Proposition 3 holds, since ∇ i W g(P ) = 0 for all i < ω(P ) and
det g = 1 + O (rN ) (a complete proof is given in [4], Section 8). The third statement is proven by T. Aubin ([2], Section 3).
Using the fact that R̄ is homogeneous polynomial of degree ω(P ) and the fact that for all j �ω(P ) − 1∣∣∇ j R g(P )

∣∣ = 0, �
j+1
g R g(P ) = 0 and

∣∣∇�
j+1
g R g(P )

∣∣ = 0 (6)

(the proof of (6) is given in [4], Section 8), it is proven in [2] that this implies �
[ω(P )/2]
E R̄ = 0, where �E is the Euclidean

Laplacian. Hence, if we restrict R̄ to the sphere, we get the decomposition of the item 4 in Proposition 3. �
Using the split of R̄ given in Proposition 3, we proved in [9] that if the cardinality of O G(P ) is minimal and ω(P ) �

15, then there exists c ∈ R such that for f = cR̄|Sn−1 , the function φε = ∑
Pi∈O G (P ) ϕε,Pi is G-invariant and satisfies (5).

Moreover, we proved the following theorem:

Theorem 4. If ω(P ) � (n − 6)/2, then there exist ck ∈ R, such that for f = ∑q
k=1 ckϕk, the function ϕε,P satisfies I g(ϕε,P ) <

1
4 n(n − 2)ω

2/n
n .

The proof of Theorem 4 is technical and uses Proposition 3. It is given in [9] (see also [8] for a detailed proof). Below, we
show that using Theorem 4, we can construct a G-invariant function φε which satisfies (5) for ω(P ) � n−6

2 (the cardinality
of O G(P ) is not necessarily minimal). This implies Theorem 2.

Proof of Theorem 2. If μ(P )�ω(P )+1, then
∫

Sn−1(r) R dσ < 0 for r > 0 sufficiently small (see Proposition 3). The conjecture
holds immediately, by choosing f = 0, ϕε,P = uε,P (see [8,9] for more details).

From now on, we suppose that μ(P ) = ω(P ). Let H ⊂ G be the stabilizer of P . We consider the function f = ∑q
k=1 ckϕk

of Theorem 4. Using the exponential map on P as a local chart, we can view f and ϕk as functions defined over the unit
sphere of T P M , the tangent space of M on P . Let h be an isometry in H and h∗(P ) : (T P M, gP ) → (T P M, gP ) be the linear
tangent map of h on P . It is a linear isometry with respect to the inner product gP which is Euclidean. h∗(P ) conserves
the unit sphere Sn−1 ⊂ T P M and the Laplacian. We already know that the function R̄ = rω(P )

∑q
k=1 νkϕk is H-invariant.

Notice that ϕk and ϕ j belong to two different eigenspaces if k �= j. Since, isometries conserve the Laplacian and ϕk are
eigenfunctions of the Laplacian on the sphere endowed with its standard metric, it yields that ϕk and f are H-invariant. On
the other hand, we have the following bijective map:

G/H −→ O G(P )

σ H �−→ σ(P ).

Since f is H-invariant, ϕε,P is H-invariant and the function φε = ∑
σ∈G/H ϕε,P ◦ σ−1 is G-invariant and satisfies (5). �
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