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We compute the Jacquet modules for a certain class of irreducible representations of the
general linear group over a non-Archimedean local field. This class contains the Speh
representations.
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r é s u m é

On calcule les modules de Jacquet pour une certaine classe de représentations irréductibles
du groupe linéaire général sur un corps local non-archimédien. Cette classe contient les
représentations de Speh.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let F be a non-Archimedean local field with residue characteristic p and consider the locally compact, totally dis-
connected group Gn := GLn(F ). Let P = M � N be the standard, block upper triangular, parabolic subgroup of type
(n1,n2, . . . ,nk) with the standard Levi decomposition. Thus M � ∏k

i=1 Gni . The normalized Jacquet functor J P is a functor
from the category of smooth admissible complex representations of Gn to those of M . It is defined as the space of coinvari-
ants for the action of the unipotent group N on π , twisted by a certain normalizing character. More precisely,

J P (π) := πN
[
δ
−1/2
P

]
, where δP (m) := ∣∣det

(
Ad(m)

∣∣ Lie(N)
)∣∣, m ∈ M.

In general, it is a difficult problem to compute J P (π), or even its semisimplification, for an arbitrary irreducible π . In
this note we will give an explicit formula for J P (π) for a certain class of irreducible representations, namely the ladder
representations introduced in [6]. The case where P is the minimal for which J P (π) �= 0 was considered in [6]. Here we will
extend it to any P .

The class of ladder representations contains the class of Speh representations. The main result of [6] is to extend the
determinantal formula of Tadić for Speh representations [8] (cf. also [2]) to ladder representations (see (2) below). Speh
representations are important in the representation theory of the general linear group, because they form the building blocks
for the unitary dual of Gn . More precisely, it was shown by Tadić that any irreducible unitary representation is isomorphic
to the parabolic induction of Speh representations twisted by certain (explicit, but not necessarily unitary) characters [9].
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In particular, this is the case for the local components of representations which occur in the discrete automorphic spectrum
of Gn over a global field.

It follows from our result that the Jacquet module of a ladder representation is semisimple, multiplicity free, and that its
irreducible constituents are themselves tensor products of ladder representations. In contrast, the class of Speh representa-
tions is not stable under taking the Jacquet module. In other words, (non-Speh) ladder representations are encountered in
the Jacquet module of Speh representations. Hence, ladder representations are important for global applications.

Our result has an application to Shimura varieties. In [5], the first named author computed the Hasse–Weil zeta function
of the basic stratum of certain simple Shimura varieties at split primes of good reduction following the method of Langlands
and Kottwitz [4]. Apart from the basic stratum, these varieties admit additional Newton strata (cf. [7]). In order to compute
the zeta function of a given stratum S one may proceed as in [5] provided that one knows the Jacquet modules of the
representations occurring in the cohomology of S . These representations turn out to be (essentially) Speh representations,
and hence the problem reduces to the one considered in this note. Details will be given elsewhere.

2. The main result

We first introduce some more notation. We write R= ⊕
n∈Z�0

GR(Gn) where GR(Gn) is the Grothendieck group of the

category Rep(Gn) of smooth complex representations of Gn of finite length. The group R has a structure of a graded ring
(introduced by Zelevinsky in [10]) with multiplication given by

π1 × π2 := Ind
Gn1+n2
Pn1,n2

(π1 ⊗ π2) ∈ Rep(Gn1+n2),

(normalized induction) for π1 ∈ Rep(Gn1 ),π2 ∈ Rep(Gn2 ), n1,n2 ∈ Z�0 where Pn1,n2 is the standard parabolic subgroup of
Gn1+n2 of type (n1,n2). The unit element of R is the one-dimensional representation of G0.

Fix an integer d > 0 and a cuspidal (not necessarily unitary) representation ρ of Gd . For our purposes, a segment [a,b]
is a set of integers of the form {a,a + 1, . . . ,b} with b � a. For any segment [a,b] the representation ρ[|det ·|a] × · · · ×
ρ[|det ·|b] admits a unique irreducible quotient δ([a,b]), the so-called generalized Steinberg representation. A ladder is a finite
sequence of segments [a1,b1], . . . , [at,bt] such that a1 > a2 > · · · > at and b1 > b2 > · · · > bt . Given a ladder of segments,
we may form the representation δ([a1,b1]) × · · · × δ([at ,bt]). This representation admits a unique irreducible quotient,
LQ(δ([a1,b1]) × · · · × δ([at ,bt])), which is the Langlands quotient in the case at hand. The representations which arise in this
manner are by definition the ladder representations. The subclass of Speh representations (up to twists) is obtained by taking
ai+1 = ai − 1 and bi+1 = bi − 1 for all i = 1, . . . , t − 1.

The ring R is actually a bi-algebra (and in fact has an additional structure of a Hopf-algebra) with respect to the
comultiplication � :R→R⊗R defined by π �→ ∑n

i=0 J Pi,n−i (π), π ∈ Rep(Gn). In particular we have

�
(
δ
([a,b])) =

∑
c

δ
([c + 1,b]) ⊗ δ

([a, c]), (1)

where we have used the convention that δ([a,b]) = 0 if b < a − 1 and δ([a,a − 1]) = 1 ∈R.

Theorem 2.1. Suppose that a1 > · · · > at and b1 > · · · > bt . Then

�
(
LQ

(
δ
([a1,b1]

)
, . . . , δ

([at,bt]
)))

=
∑

c1>···>ct∈Z
LQ

(
δ
([c1 + 1,b1]

)
, . . . , δ

([ct + 1,bt]
)) ⊗ LQ

(
δ
([a1, c1]

)
, . . . , δ

([at, ct]
))

.

Remark 1. Note the similarity between this formula and the formula

�
(
δ
([a1,b1]

) × · · · × δ
([at,bt]

)) =
∑

c1,...,ct∈Z
δ
([c1 + 1,b1]

) × · · · × δ
([ct + 1,bt]

) ⊗ δ
([a1, c1]

) × · · · × δ
([at, ct]

)
.

Let us now prove Theorem 2.1. By the determinantal formula of Tadić [6] we have

LQ
(
δ
([a1,b1]

)
, . . . , δ

([at,bt]
)) = det

(
δ
([ai,b j]

))
i, j=1,...,t . (2)

Since � is an algebra homomorphism we get

�
(
LQ

(
δ
([a1,b1]

)
, . . . , δ

([at,bt]
))) = det

(
�

(
δ
([ai,b j]

)))
i, j=1,...,t .

By (1) and using the multi-linearity of the determinant, it is further equal to

∑
det

(
δ
([c j + 1,b j]

) ⊗ δ
([ai, c j]

)) =
∑ (

t∏
δ
([c j + 1,b j]

)) ⊗ det
(
δ
([ai, c j]

))
.

c1,...,ct∈Z c1,...,ct∈Z j=1
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Write St for the symmetric group on the set {1,2, . . . , t}. Observe that if c j = ck for some j �= k then det(δ([ai, c j])) = 0
since two columns in the matrix are identical. Therefore, only distinct c1, . . . , ct contribute to the right-hand side of the
above equation, and we can write the sum as

∑
c1>···>ct∈Z

∑
s∈St

(
t∏

j=1

δ
([cs( j) + 1,b j]

)) ⊗ det
(
δ
([ai, cs( j)]

))

=
∑

c1>···>ct∈Z

∑
s∈St

sgn s

(
t∏

j=1

δ
([cs( j) + 1,b j]

)) ⊗ det
(
δ
([ai, c j]

))

=
∑

c1>···>ct∈Z
det

(
δ
([ci + 1,b j]

)) ⊗ det
(
δ
([ai, c j]

))
.

Applying (2) once more, we obtain Theorem 2.1.

Corollary 2.2. Suppose that a1 > · · · > at and b1 > · · · > bt . Then the Jacquet module of LQ(δ([a1,b1]), . . . , δ([at,bt])) with respect
to the parabolic subgroup of type (n1, . . . ,nk) is⊕

f

LQ
(

f −1(1)
) ⊗ · · · ⊗ LQ

(
f −1(k)

)
(3)

where the sum is over all k-colorings f : ⋃t
i=1([ai,bi] × {i}) → {1, . . . ,k} such that

(i) j �→ f ( j, i) is (weakly) monotone decreasing for all i = 1, . . . , t,
(ii) nl = d · | f −1(l)| for all l = 1, . . . ,k,

(iii) for any l = 1, . . . ,k and i = 1, . . . , t, let mi,l = min{ j ∈ [ai,bi + 1]: f ( j, i) � l} (with f (bi + 1, i) = −∞) and ni,l = max{ j ∈
[ai − 1,bi]: f ( j, i) � l} (with f (ai − 1, i) = ∞). Then mi,l > mi+1,l and ni,l > ni+1,l for all i = 1, . . . , t − 1, l = 1, . . . ,k.

See Fig. 1.
The corollary extends the result of [6] (i.e., the case n1 = · · · = nt = d). Up to semisimplification, the corollary follows

from Theorem 2.1 by induction on k. To show that the Jacquet module is semisimple it suffices to note that the summands
in (3) have distinct supercuspidal supports. This follows from the fact that given b1 > · · · > bt and a multiset A of integers,
there is at most one sequence a1 > · · · > at such that ai � bi + 1 for all i and A = ⋃[ai,bi]. We apply this inductively on l
to show that mi,l and ni,l , i = 1, . . . , t are determined by the supercuspidal support.

Fig. 1. An example of a 4-coloring of 3 segments satisfying the conditions of Corollary 2.2.

Fig. 1. Un exemple d’une 4-coloration de 3 segments satisfaisant les conditions du Corollaire 2.2.
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