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It has been proved in J.A. Green (1956) [5] for every p-group of order pn , |M(G)| =
p

1
2 n(n−1)−t(G) , where t(G) � 0. In Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], and X. Zhou

(1994) [14], the structure of G has been characterized for t(G) = 0,1,2,3 by several
authors. Also in A.R. Salemkar et al. (2007) [12], the structure of G characterized when
t(G) = 4 and Z(G) is elementary abelian, but there are some missing points in classifying
the structure of these groups. This paper is devoted to classify the structure of G when
t(G) = 4 without any condition and with a short and quite different way to that of Ya.G.
Berkovich (1991) [1], G. Ellis (1999) [4], A.R. Salemkar et al. (2007) [12], and X. Zhou
(1994) [14].
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r é s u m é

Il est montré dans J.A. Green (1956) [5] que pour tout p-groupe d’ordre pn on a |M(G)| =
p

n(n−1)
2 −t(G) où t(G) � 0. Dans Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], et X. Zhou

(1994) [14] la structure de G a été classifiée par plusieurs auteurs pour t(G) = 0,1,2,3.
Également, dans A.R. Salemkar et al. (2007) [12] la structure de G est caractérisée lorsque
t(G) = 4 et Z(G) est abelien élémentaire, mais il y a quelques trous dans la classification
complète de ces groupes. Cette Note est consacrée à la caractérisation de la structure de G
lorsque t(G) = 4, sans restriction aucune et d’une manière différente, plus directe que les
approches de Ya.G. Berkovich (1991) [1], G. Ellis (1999) [4], A.R. Salemkar et al. (2007) [12],
et X. Zhou (1994) [14].

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and motivation

The literature of M(G), the Schur multiplier is going back to the work of Schur in 1904. It is important to know for
which classes of groups the structure of group can be completely described only by the order of M(G). The answer to
this question for the class of finite p-group, was born in a result of Green. It is shown that in [5], for a given p-group

of order pn , |M(G)| = p
1
2 n(n−1)−t(G) where t(G) � 0. Several authors tried to characterize the structure of G by t(G). The

structure of G was classified in [1,14] for t(G) = 0,1,2. When t(G) = 3, Ellis in [4] classified the structure of G by a different
method to that of [1,14]. He also could find the same results for t(G) = 0,1,2.
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By a similar technique to [4, Theorem 1], the structure of p-groups with t(G) = 4 has been determined in [12] when
Z(G) is elementary abelian, but it seems there are some missing points in classifying the structure of these groups. The
Main Theorem shows that there are some groups which are not seen in these classification.

Recently in [8–10], the author gives some results on the Schur multiplier of non-abelian p-groups. Handling these results,
the present paper is devoted to classify the structure of all finite p-groups when t(G) = 4 without any condition.

2. Main results

In this section, at first we summarize some known results which are used throughout this paper and then we classify
the structure of all p-groups when t(G) = 4. Since abelian groups with the property t(G) = 4 are determined in [12, Main
Theorem (a)], we concentrate on non-abelian p-groups.

Using notations and terminology of [4], here D8 and Q 8 denote the dihedral and quaternion group of order 8, E1 and
E2 denote the extra special p-groups of order p3 of exponent p and p2, respectively. Also Z

(m)
pn denotes the direct product

of m copies of the cyclic group of order pn .

In this paper, we say that G has the property t(G) = 4 or briefly with t(G) = 4, if |M(G)| = p
1
2 n(n−1)−4.

Theorem 2.1. (See [8, Main Theorem].) Let G be a non-abelian p-group of order pn. If |G ′| = pk, then we have

∣∣M(G)
∣∣ � p

1
2 (n+k−2)(n−k−1)+1.

In particular,

∣∣M(G)
∣∣ � p

1
2 (n−1)(n−2)+1,

and the equality holds in the last bound if and only if G = E1 × Z , where Z is an elementary abelian p-group.

Theorem 2.2. (See [10, Main Theorem].) Let G be a non-abelian p-group of order pn. Then |M(G)| = p
1
2 (n−1)(n−2) if and only if G is

isomorphic to one of the following groups.

(i) D8 × Z , where Z is an elementary abelian p-group.
(ii) Z

(4)
p �Zp (p �= 2).

Theorem 2.3. (See [6, Theorem 2.2.10].) For every pair of finite groups H and K , we have

M(H × K ) ∼= M(H) ×M(K ) × H

H ′ ⊗ K

K ′ .

Theorem 2.4. (See [6, Theorem 3.3.6].) Let G be an extra special p-group of order p2m+1 . Then

(i) If m � 2, then |M(G)| = p2m2−m−1 .
(ii) If m = 1, then the order of Schur multipliers of D8, Q 8, E1 and E2 are equal to 2,1, p2 and 1, respectively.

Theorem 2.5. Let G be a non-abelian p-group of order pn and n � 6, then there is exactly one group with the property t(G) = 4 which
is isomorphic to E1 ×Z

(3)
p .

Proof. First assume that |G ′| = p. By Theorem 2.1, if |M(G)| = p
1
2 (n−1)(n−2)+1, then G ∼= E1 × Z . One can check that by

Theorems 2.3 and 2.4, Z ∼= Z
(3)
p . Otherwise, |M(G)| = p

1
2 n(n−1)−4 � p

1
2 (n−1)(n−2) so n � 5.

Now assume that |G ′| = pk (k � 2), Theorem 2.1 implies that

1

2

(
n2 − n − 8

)
� 1

2
(n + k − 2)(n − k − 1) + 1 � 1

2
n(n − 3) + 1,

and hence n � 3 unless k = 2, in which case n � 5. �
The following theorem is a consequence of Theorems 2.1 and 2.2.

Theorem 2.6. Let G be a non-abelian p-group of order p5 and t(G) = 4. Then G is isomorphic to the

Z
(4)
p �Zp (p �= 2) or D8 ×Z

(2)
p .
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Now we need only consider non-abelian groups of order p4 with t(G) = 4, because of Theorems 2.5 and 2.6.
In the case p = 2, the following lemma characterizes all groups of order 16 with t(G) = 4.

Lemma 2.7. Let G be a non-abelian p-group of order 16 with t(G) = 4, then G is isomorphic to one of the groups listed below

(i) Q 8 ×Z2 ,
(ii) 〈a,b | a4 = 1,b4 = 1, [a,b,a] = [a,b,b] = 1, [a,b] = a2b2〉,

(iii) 〈a,b, c | a2 = b2 = c2 = 1,abc = bca = cab〉.

Proof. The Schur multiplier of all groups of order 16 is determined in Table I of [2] (also see [11]). �
Lemma 2.8. Let G be a non-abelian group of order p4 (p �= 2) and Z(G) be of exponent p2 with t(G) = 4. Then G ∼= E4 , where E4 is
the unique central product of a cyclic group of order p2 and a non-abelian group of order p3 .

Proof. If G/G ′ is not elementary abelian, then one can check that G is of exponent p3. Since G is the unique 2-generated

p-groups of class 2 and exponent p3, groups are listed in [7, p. 4] shows G ∼= 〈a,b | a
p3 = 1,b

p = 1,a
p2 = [a,b]〉. Now by

using [7, Theorem 49], we have |M(G)| = 1. Thus G/G ′ is elementary abelian. The rest of proof is obtained directly by
invoking [8, Lemma 2.1]. �
Lemma 2.9. Let G be a group of order p4(p �= 2), |G ′| = p, Z(G) of exponent p and t(G) = 4, then G is isomorphic to

E2 ×Zp or
〈
a,b

∣∣ ap2 = 1,bp = 1, [a,b,a] = [a,b,b] = 1
〉
.

Proof. First suppose that G/G ′ is elementary abelian. Then [8, Lemma 2.1] and Theorem 2.4 show that G ∼= E2 × Zp .

Otherwise by [3, pp. 87–89], there are two groups

〈
a,b

∣∣ ap2 = 1,bp = 1, [a,b,a] = [a,b,b] = 1
〉

and
〈
a,b

∣∣ ap2 = bp2 = 1, [a,b,a] = [a,b,b] = 1, [a,b] = ap 〉

such that Z(G) ∼= Zp ⊕Zp , G/G ′ ∼= Zp ⊕Zp2 and G ′ ∼= Zp .

Since the first has a central subgroup H such that G/H ∼= E1 [6, Corollary 2.5.3(i)] shows p2 � |M(G)|. Now by taking
B = G ′ in [6, Theorem 2.5.5(i)], we have |M(G)| � p2, and so |M(G)| = p2. On the other hand, [6, Theorem 2.2.5] shows
that the second group has |M(G)| = p, from which the result follows. �
Lemma 2.10. Let G be a group of order p4 (p �= 2), |G ′| = p2 and t(G) = 4. Then G is isomorphic to one of the following groups.

(i) 〈a,b | a9 = b3 = 1, [a,b,a] = 1, [a,b,b] = a6, [a,b,b,b] = 1〉,

(ii) 〈a,b | ap = 1,bp = 1, [a,b,a] = [a,b,b,a] = [a,b,b,b] = 1〉 (p �= 3).

Proof. The fifteen groups of odd order p4 are listed in [3] or [13]. Our conditions reduce these groups to the unique group
(see also [4, p. 4177] for more details). �

In the following theorem we summarize the results.

Theorem 2.11. Let G be a non-abelian group of order pn with t(G) = 4, then G is isomorphic to one of the following groups.
For p = 2,

(1) D8 ×Z
(2)
p ,

(2) Q 8 ×Z2 ,

(3) 〈a,b | a4 = 1,b4 = 1, [a,b,a] = [a,b,b] = 1, [a,b] = a2b2〉,

(4) 〈a,b, c | a2 = b2 = c2 = 1,abc = bca = cab〉.

For p �= 2,

(5) E4 ,

(6) E1 ×Z
(3)
p ,

(7) Z
(4)
p �Zp,
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(8) E2 ×Zp ,

(9) 〈a,b | ap2 = 1,bp = 1, [a,b,a] = [a,b,b] = 1〉,

(10) 〈a,b | a9 = b3 = 1, [a,b,a] = 1, [a,b,b] = a6, [a,b,b,b] = 1〉,

(11) 〈a,b | ap = 1,bp = 1, [a,b,a] = [a,b,b,a] = [a,b,b,b] = 1〉 (p �= 3).
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