Number Theory

On the Erdős-Turán conjecture ${ }^{\text {™ }}$

Sur la conjecture d'Erdös-Turán

Yong-Gao Chen

School of Mathematical Sciences and Institute of Mathematics, Nanjing Normal University, Nanjing 210023, PR China

A R T I C L E IN F O

Article history:

Received 11 June 2012
Accepted after revision 25 October 2012
Available online 1 November 2012
Presented by the Editorial Board

Abstract

Let \mathbb{N} be the set of all nonnegative integers. For a set $A \subseteq \mathbb{N}$, let $R(A, n)$ denote the number of solutions $\left(a, a^{\prime}\right)$ of $a+a^{\prime}=n$ with $a, a^{\prime} \in A$. The well known Erdős-Turán conjecture says that if $R(A, n) \geqslant 1$ for all integers $n \geqslant 0$, then $R(A, n)$ is unbounded. In this Note, the following result is proved: There is a set $A \subseteq \mathbb{N}$ such that $R(A, n) \geqslant 1$ for all integers $n \geqslant 0$ and the set of n with $R(A, n)=2$ has density one. © 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Soit \mathbb{N} l'ensemble des entiers positifs ou nul. Pour un sous-ensemble $A \subset \mathbb{N}$ nous notons $R(A, n)$ le nombre de solutions $\left(a, a^{\prime}\right) \in A^{2}$ de $a+a^{\prime}=n$. La célèbre conjecture d'ErdösTurán affirme que si $R(A, n) \geqslant 1$ pour tout entier $n \geqslant 0$, alors $R(A, n)$ n'est pas borné. Nous montrons dans cette Note qu'il existe un sous-ensemble $A \subset \mathbb{N}$ tel que $R(A, n) \geqslant 1$ pour tout entier $n \geqslant 0$ et tel que l'ensemble des n satisfaisant $R(A, n)=2$ soit de densité un.

© 2012 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let \mathbb{N} be the set of all nonnegative integers. For a set $A \subseteq \mathbb{N}$, let $R(A, n)$ denote the number of solutions (a, a^{\prime}) of $a+a^{\prime}=n$ with $a, a^{\prime} \in A$. If $R(A, n) \geqslant 1$ for all $n \in \mathbb{N}$, then A is called a basis of \mathbb{N}. The well known Erdős-Turán conjecture [4] says that if A is a basis of \mathbb{N}, then $R(A, n)$ is unbounded. Grekos, Haddad, Helou, and Pihko [5] proved that if A is a basis of \mathbb{N}, then $R(A, n) \geqslant 6$ for infinitely many positive integers n. Borwein, Choi, and Chu [1] improved 6 to 8 . Nathanson [8] proved that the Erdős-Turán conjecture does not hold in \mathbb{Z}. For a set $A \subseteq \mathbb{Z}_{m}$, let $R_{m}(A, n)$ denote the number of solutions (a, a^{\prime}) of $a+a^{\prime}=n$ with $a, a^{\prime} \in A$. Developing Ruzsa's method [9], Tang and Chen [11] proved that for every sufficiently large integer m, there exists $A \subseteq \mathbb{Z}_{m}$ such that $1 \leqslant R_{m}(A, n) \leqslant 768$ for all $n \in \mathbb{Z}_{m}$. In 2008, Chen [2] proved that for every positive integer m, there exists $A \subseteq \mathbb{Z}_{m}$ such that $1 \leqslant R_{m}(A, n) \leqslant 288$ for all $n \in \mathbb{Z}_{m}$. In 1990, Ruzsa [9] found a subset A of \mathbb{N} for which $R(A, n) \geqslant 1$ for all integers $n \geqslant 0$ and $R(A, n)$ is bounded in the square mean. Tang [10] gave a quantitative version of Ruzsa's theorem. Recently, the author and Yang [3] gave a new proof of Ruzsa's theorem.

In this Note, the following result is proved:

Theorem 1. There is a basis A of \mathbb{N} such that the set of n with $R(A, n)=2$ has density one.

[^0]
2. Proofs

Lemma 1. (See [7, Lemma 2].) Let w_{1}, \ldots, w_{s} be s distinct nonnegative integers. If

$$
\sum_{i=1}^{s} 2^{w_{i}}=\sum_{j=1}^{t} 2^{x_{j}}
$$

where x_{1}, \ldots, x_{t} are nonnegative integers that are not necessarily distinct, then there is a partition of $\{1,2, \ldots, t\}$ into s nonempty sets J_{1}, \ldots, J_{s} such that

$$
2^{w_{i}}=\sum_{j \in J_{i}} 2^{x_{j}}
$$

for $i=1, \ldots, s$.

Lemma 2. Let w be a nonnegative integer, and let I and J be two finite sets of nonnegative integers such that the integers in $I \cup J$ have the same parity. If

$$
\begin{equation*}
2^{w}=\sum_{i \in I} 2^{i}+\sum_{j \in J} 2^{j} \tag{1}
\end{equation*}
$$

then either $I \cup J=\{w\}$ or $I=J=\{w-1\}$.
Proof. If $I=\emptyset$ or $J=\emptyset$, then the conclusion is clear by the uniqueness of the binary representation. We now assume that $I \neq \emptyset$ and $J \neq \emptyset$. Let i_{1} and j_{1} be the least integers in I and J respectively. If $i_{1} \neq j_{1}$, say $i_{1}<j_{1}$, then by (1) we have

$$
\begin{equation*}
-2^{i_{1}}=\sum_{i \in I \backslash\left\{i_{1}\right\}} 2^{i}+\sum_{j \in J} 2^{j}-2^{w} \tag{2}
\end{equation*}
$$

The right-hand side of (2) is divisible by $2^{i_{1}+1}$, a contradiction. So $i_{1}=j_{1}$. Thus

$$
\begin{equation*}
2^{w}-2^{i_{1}+1}=\sum_{i \in I \backslash\left\{i_{1}\right\}} 2^{i}+\sum_{j \in J \backslash\left\{j_{1}\right\}} 2^{j} \tag{3}
\end{equation*}
$$

Suppose that $w>i_{1}+1$. Since the integers in $I \cup J$ have the same parity, the right-hand side of (3) is divisible by $2^{i_{1}+2}$. But the left-hand side of (3) is not divisible by $2^{i_{1}+2}$, a contradiction. Hence $w=i_{1}+1$. Thus $I=\left\{i_{1}\right\}=\{w-1\}$ and $J=\left\{j_{1}\right\}=\{w-1\}$.

Let P be a possible property of a positive integer, and $P(x)$ the number of positive integers less than x with the property P. If $P(x) / x \rightarrow 1$ as $x \rightarrow \infty$, we say that almost all positive integers possess the property P.

Lemma 3. (See [6, Theorem 143].) Almost all positive integers, when expressed in any scale, contain a given possible sequence of digits.
Proof of Theorem 1. Let

$$
A=\left\{\sum_{i=0}^{\infty} \varepsilon_{i} 2^{2 i}: \varepsilon_{i} \in\{0,1\}\right\} \cup\left\{\sum_{i=1}^{\infty} \varepsilon_{i} 2^{2 i-1}: \varepsilon_{i} \in\{0,1\}\right\},
$$

where in each sum there are only finitely many $\varepsilon_{i}=1$. Since each positive integer has its binary representation and $0 \in A$, it follows that $R(A, n) \geqslant 1$ for all integers $n \geqslant 0$. We say that a positive integer n has the property P if n contains a sequence 111 in its binary representation. By Lemma 3, almost all positive integers have the property P. In order to prove Theorem 1, it is enough to prove that $R(A, n)=2$ for all n with the property P.

Let $n=\sum_{i \in I} 2^{i}$ be a positive integer with the property P. We treat the case where $\{2 k, 2 k+1,2 k+2\} \subseteq I$, for a certain $k \geqslant 0$. The case where $\{2 k+1,2 k+2,2 k+3\} \subseteq I$, for a certain $k \geqslant 0$, can be treated similarly.

Let $n=a^{\prime}+a^{\prime \prime}$ with $a^{\prime}, a^{\prime \prime} \in A$. It is clear that $a^{\prime} \neq 0$ and $a^{\prime \prime} \neq 0$.
We suppose that

$$
a^{\prime}=\sum_{i \in I^{\prime}} 2^{2 i}, \quad a^{\prime \prime}=\sum_{i \in I^{\prime \prime}} 2^{2 i}
$$

and we shall obtain a contradiction.

By Lemma 1, there are two disjoint subsets $I_{1}^{\prime}, I_{2}^{\prime}$ of I^{\prime} and two disjoint subsets $I_{1}^{\prime \prime}, I_{2}^{\prime \prime}$ of $I^{\prime \prime}$ (possibly $I_{j}^{\prime}=\emptyset$ and $I_{j}^{\prime \prime}=\emptyset$, $j=1$ or 2) such that

$$
2^{2 k}=\sum_{i \in I_{1}^{\prime}} 2^{2 i}+\sum_{i \in I_{1}^{\prime \prime}} 2^{2 i}
$$

and

$$
2^{2 k+1}=\sum_{i \in I_{2}^{\prime}} 2^{2 i}+\sum_{i \in I_{2}^{\prime \prime}} 2^{2 i}
$$

By Lemma 2 we have $I_{1}^{\prime} \cup I_{1}^{\prime \prime}=I_{2}^{\prime}=I_{2}^{\prime \prime}=\{k\}$. This contradicts the fact that $I_{1}^{\prime} \cap I_{2}^{\prime}=\emptyset$ and $I_{1}^{\prime \prime} \cap I_{2}^{\prime \prime}=\emptyset$.
Similarly, we can derive a contradiction (using $2 k+1$ and $2 k+2$) if

$$
a^{\prime}=\sum_{i \in I^{\prime}} 2^{2 i+1}, \quad a^{\prime \prime}=\sum_{i \in I^{\prime \prime}} 2^{2 i+1}
$$

By the uniqueness of the binary representation and the definition of A, we have that either

$$
a^{\prime}=\sum_{i \in I, 2 \mid i} 2^{i}, \quad a^{\prime \prime}=\sum_{i \in I, 2 \nmid i} 2^{i}
$$

or

$$
a^{\prime \prime}=\sum_{i \in I, 2 \mid i} 2^{i}, \quad a^{\prime}=\sum_{i \in I, 2 \nmid i} 2^{i}
$$

Therefore, $R(A, n)=2$.

Acknowledgement

I am grateful to the referee for his/her comments.

References

[1] P. Borwein, S. Choi, F. Chu, An old conjecture of Erdős-Turán on additive bases, Math. Comp. 75 (2006) 475-484.
[2] Y.-G. Chen, The analogue of Erdős-Turán conjecture in \mathbb{Z}_{m}, J. Number Theory 128 (2008) 2573-2581.
[3] Y.-G. Chen, Q.-H. Yang, Ruzsa's theorem on Erdős and Turán conjecture, European J. Combin. 34 (2013) 410-413, http://dx.doi.org/10.1016/j.ejc. 2012.08.001.
[4] P. Erdős, P. Turán, On a problem of Sidon in additive number theory, and on some related problems, J. London Math. Soc. 16 (1941) $212-215$.
[5] G. Grekos, L. Haddad, C. Helou, J. Pihko, On the Erdős-Turán conjecture, J. Number Theory 102 (2003) 339-352.
[6] G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 5th ed., Oxford Univ. Press, 1979.
[7] M.B. Nathanson, Minimal bases and powers of 2, Acta Arith. 49 (1988) 525-532.
[8] M.B. Nathanson, Unique representation bases for integers, Acta Arith. 108 (2003) 1-8.
[9] I.Z. Ruzsa, A just basis, Monatsh. Math. 109 (1990) 145-151.
[10] M. Tang, A note on a result of Ruzsa, II, Bull. Aust. Math. Soc. 82 (2010) 340-347.
[11] M. Tang, Y.-G. Chen, A basis of \mathbb{Z}_{m}, Colloq. Math. 104 (2006) 99-103.

[^0]: th This work was supported by the National Natural Science Foundation of China, Grant No. 11071121.
 E-mail address: ygchen@njnu.edu.cn.

