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Let E be an elliptic curve defined over a number field K and let S be a density-one set of
primes of K of good reduction for E . Faltings proved in 1983 that the K -isogeny class of
E is characterized by the function p �→ #E(kp), which maps a prime p ∈ S to the order of
the group of points of E over the corresponding field kp. We show that, in this statement,
the integer #E(kp) can be replaced by its radical.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit E une courbe elliptique définie sur un corps de nombres K , et soit S un ensemble de
densité 1 de places de K en lesquelles E a bonne réduction. Faltings a montré en 1983 que
la classe de K -isogénie de E est caracterisée par la fonction p �→ #E(kp), qui envoie chaque
place p ∈ S sur l’ordre du groupe des points de E sur le corps résiduel correspondant. On
montre qu’il suffit de considérer les nombres premiers divisant cet ordre.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let E, E ′ be elliptic curves defined over a number field K . Let S be a density-one set of primes of K of good reduction for
E and E ′ . For every p ∈ S write kp for the residue field. Faltings proved in 1983 that the curves E, E ′ are K -isogenous if and
only if for every prime p ∈ S they have the same number of points over the residue field: #E(kp) = #E ′(kp) (cf. [1, Cor. 2]).
A weaker condition that one could ask for is that these two integers have the same radical, that is, � | #E(kp) if and only if
� | #E ′(kp), for every prime number �. We show that this is indeed enough. More precisely:

Theorem. Suppose E, E ′ are elliptic curves over a number field K , and let S be a density-one set of primes of K over which E, E ′ have
good reduction. If Λ ⊆ N is an infinite set of primes, then the following are equivalent:

1. E, E ′ are K -isogenous;
2. � | #E(kp) if and only if � | #E ′(kp), for every � ∈ Λ and for every p ∈ S.

The natural generalization of this result to higher dimensional Abelian varieties (‘faithfully of type GSp’, cf. [4]) has
recently been proven by N. Ratazzi in [6], relying on the method that we used in a preceding version of this paper [3]. We
thank F. Pellarin for helping us simplify Step 3 of the proof.
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1. Preliminaries

Let K be a number field, and after fixing a Galois closure K̄ of K let G K be the absolute Galois group. Let � be a
prime number, and write μ� for the set of �-th roots of unity in K̄ . Let E be an elliptic curve defined over K . We write
K� := K (E[�]) for the smallest extension of K over which the �-th torsion points of E(K̄ ) are defined. We call G� the Galois
group of K�/K , which we consider embedded in GL2(F�) after choosing a basis for E[�]. Let H� ⊆ G� be the Galois group
of K�/K (μ�). Well-known properties of the Weil pairing imply that H� = G� ∩ SL2(F�). Finally, let E := EndK̄ (E) ⊗Q, which
we identify to a subfield of K̄ in one of the two possible ways. We will use the following independence result:

Proposition 1. If L/K is a finite extension then for all but finitely many primes � we have L ∩ K� ⊆ KE .

Proof. It suffices to show LE ∩ K�E ⊆ KE hence we may suppose E ⊆ K . Note, there are only finitely many possibilities for
L ∩ K� and we may neglect the subextensions occurring only for finitely many �. Suppose that F ⊆ L satisfies F = L ∩ K� for
infinitely many �. We are left to show that F = K . By [7, Th. 3 and §4.5, Cor.] we know K�1 ∩ K�2 = K for every sufficiently
large prime numbers �1 	= �2. Then the only possibility is F = K . �

Let S be a density-one set of primes of K of good reduction for E . If v� denotes the �-adic valuation, we define ρ� to be
the following map:

ρ� : S → {0,1} p �→ min
{

1, v�

(
#E(kp)

)}
.

There is a Galois–theoretic way to analyze ρ�:

Lemma 2. Suppose p ∈ S is not over � and does not ramify in K� and q is a prime of K� over p. If φq ∈ G� is the Frobenius of q, then
ρ�(p) = 1 if and only if det(φq − 1) = 0.

Proof. The embedding E(kp) → E(kq) identifies E(kp)[�] with ker(φq − 1) ⊆ E[�], hence � | #E(kp) if and only if 1 is an
eigenvalue of φq. �

Let E ′ be another elliptic curve over K and suppose that the primes in S are also of good reduction for E ′ . Define
analogously K ′

� , G ′
� , H ′

� , E ′ and ρ ′
� for E ′ . We use the notation Γ� ⊆ G� × G ′

� for the Galois group of the compositum
K�K ′

�/K .

Lemma 3. If ρ� = ρ ′
� , then det(γ − 1),det(γ ′ − 1) are both zero or both non-zero for every (γ ,γ ′) ∈ Γ� .

Proof. By the Cebotarev Density Theorem there is some prime p ∈ S not over �, unramified in K�K ′
� and whose Frobe-

nius conjugacy class in Γ� contains (γ ,γ ′). Lemma 2 implies the values ρ�(p), ρ ′
�(p) respectively identify whether or not

det(γ − 1),det(γ ′ − 1) are non-zero, and thus the hypothesis ρ�(p) = ρ ′
�(p) implies the determinants are both zero or both

non-zero. �
2. Proof of the theorem

The implication 1 ⇒ 2 is trivial, so we prove 2 ⇒ 1. Our assumption is that ρ� = ρ ′
� for every � ∈ Λ.

2.1. Step 1: Reduction to the case E,E ′ ⊆ K

Consider the field L := KEE ′ . For a density-one set of primes q of L we have: q is of good reduction for E and E ′; the
prime p := q ∩ K is in S; the prime q has degree one hence kq = kp. We deduce that the assumptions of the theorem hold
for L if they hold for K . The following general lemma completes this first step of the proof:

Lemma 4. If two elliptic curves E, E ′ defined over K are KEE ′-isogenous, then they are K -isogenous.

Proof. Let L := KEE ′ . Since E, E ′ are isogenous then E = E ′ and so L = KE = KE ′ . Let S1 be the density-one subset of
primes p of K which have degree one, which neither ramify in L nor lie over 2 or 3 and which are of good reduction for E
and E ′ . Let ap (respectively a′

p) denote the trace of the Frobenius at p for E (respectively E ′).
If q is a prime of L lying over p, then aq = a′

q since E, E ′ are L-isogenous. If p splits in L, then we have ap = aq and
a′
q = a′

p since kq = kp, thus ap = a′
p. Otherwise, p ∈ S1 is inert, thus [5, Ch. 10, §4, Th. 10] implies E, E ′ have supersingular

reduction over p. Moreover, since #kp is prime and thus not a square, proposition [8, Th. 4.1] implies ap = a′
p = 0. Therefore

ap = a′
p for every p ∈ S1 as claimed. We conclude by [1, Cor. 2] that E and E ′ are K -isogenous. �
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2.2. Step 2: The curves E, E ′ are K̄ -isogenous

By [2, Th. A] (which is a refinement of [7, Lem. 9 and Th. 7]) it suffices to show that there are infinitely many prime
numbers � such that K� = K ′

� .

Lemma 5. For all but finitely many � ∈ Λ we have K� = K ′
� .

Proof. Let � ∈ Λ, and without loss of generality suppose K� � K ′
� . This means that the kernel of the projection Γ� → G ′

� is
non-trivial. This kernel projects to a non-trivial normal subgroup of G� , which is contained in H� because its elements fix
K (μ�) ⊆ K ′

� . Since E ⊆ K by the first step, for all but finitely many � either E = Q and G� = GL2(F�) or E 	= Q and G� is a
Cartan subgroup of GL2(F�), see [7, Th. 2 and §4.5, Cor.].

In the first case, γ = −1 lies in every non-trivial normal subgroup of H� = SL2(F�) (cf. [2, Lem. 2.2]). In the second case,
every γ ∈ H� is semisimple and we know det(γ ) = 1, so if γ 	= 1 we have det(γ − 1) 	= 0. Either way, we can find an
element (γ ,1) ∈ Γ� satisfying det(γ − 1) 	= 0. Lemma 3 then implies ρ� 	= ρ ′

� , contradicting � ∈ Λ. �
2.3. Step 3: Every K̄ -isogeny between E, E ′ is defined over K

We have two elliptic curves E, E ′ over a number field K that are K̄ -isogenous and such that E = E ′ ⊆ K . Every K̄ -isogeny
between such curves is defined over a finite extension of K with degree at most 6, as the following lemma shows. Let
μ ⊂ E× be the subgroup of roots of unity and ZE ⊂ E be the ring of integers. Let f : E → E ′ be a K̄ -isogeny of degree
d � 1, and let f̂ : E ′ → E be the K̄ -isogeny satisfying f̂ ◦ f = d. We write σ f for the transform of f by σ ∈ G and we define
δ to be the following map:

δ : G K → E× σ �→ 1

d

(
f̂ ◦ σ f

)
.

Lemma 6. The map δ is a group homomorphism with image contained in μ.

Proof. For every σ1, σ2 ∈ G K , since σ1 f ◦ σ1 f̂ = d and recalling that the action of G K on E ⊆ K is trivial, we have

δ(σ1σ2) = 1

d

(
f̂ ◦ σ1σ2 f

) = 1

d2

(
f̂ ◦ σ1 f ◦ σ1 f̂ ◦ σ1σ2 f

) = δ(σ1) · σ1δ(σ2) = δ(σ1) · δ(σ2)

hence δ is a homomorphism. Since f is defined over a finite extension of K , the image of δ is a finite subgroup of E× so it
is contained in μ. �

Suppose that the curves E, E ′ also satisfy the assumptions of our theorem. We take σ ∈ G K and show that σ f = f , or
equivalently δ(σ ) = 1. To do so, we work with one � ∈ Λ, to be chosen sufficiently large. We take � not dividing d, and such
that for every ζ ∈ μ \ {1} we have ζ − 1 /∈ �ZE .

Let L ⊆ K̄ be the smallest Galois extension of K where f is defined. By Proposition 1 and Lemma 5, up to excluding
finitely many � we may suppose that L ∩ K�K ′

� = K . Then we may restrict to the case where σ ∈ G K induces the identity
map on K� and K ′

� . This means that E[�] is contained in the kernel of σ f − f , so we have

(
δ(σ ) − 1

) = f̂ ◦ (
σ f − f

) ∈ �ZE .

Since � and d are coprime, we deduce that δ(σ ) − 1 is in �ZE , which implies δ(σ ) = 1.
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