

Number Theory

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

On the prime divisors of the number of points on an elliptic curve

Autour des diviseurs premiers du nombre des points sur une courbe elliptique

Chris Hall^a, Antonella Perucca^b

^a University of Wyoming, United States

^b University of Regensburg, Germany

ARTICLE INFO

Article history: Received 9 November 2012 Accepted after revision 9 January 2013 Available online 29 January 2013

Presented by Jean-Pierre Serre

ABSTRACT

Let *E* be an elliptic curve defined over a number field *K* and let *S* be a density-one set of primes of *K* of good reduction for *E*. Faltings proved in 1983 that the *K*-isogeny class of *E* is characterized by the function $\mathfrak{p} \mapsto \#E(k_{\mathfrak{p}})$, which maps a prime $\mathfrak{p} \in S$ to the order of the group of points of *E* over the corresponding field $k_{\mathfrak{p}}$. We show that, in this statement, the integer $\#E(k_{\mathfrak{p}})$ can be replaced by its radical.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soit *E* une courbe elliptique définie sur un corps de nombres *K*, et soit *S* un ensemble de densité 1 de places de *K* en lesquelles *E* a bonne réduction. Faltings a montré en 1983 que la classe de *K*-isogénie de *E* est caracterisée par la fonction $\mathfrak{p} \mapsto \#E(k_{\mathfrak{p}})$, qui envoie chaque place $\mathfrak{p} \in S$ sur l'ordre du groupe des points de *E* sur le corps résiduel correspondant. On montre qu'il suffit de considérer les nombres premiers divisant cet ordre.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let *E*, *E'* be elliptic curves defined over a number field *K*. Let *S* be a density-one set of primes of *K* of good reduction for *E* and *E'*. For every $p \in S$ write k_p for the residue field. Faltings proved in 1983 that the curves *E*, *E'* are *K*-isogenous if and only if for every prime $p \in S$ they have the same number of points over the residue field: $#E(k_p) = #E'(k_p)$ (cf. [1, Cor. 2]). A weaker condition that one could ask for is that these two integers have the same radical, that is, $\ell \mid #E(k_p)$ if and only if $\ell \mid #E'(k_p)$, for every prime number ℓ . We show that this is indeed enough. More precisely:

Theorem. Suppose E, E' are elliptic curves over a number field K, and let S be a density-one set of primes of K over which E, E' have good reduction. If $\Lambda \subseteq \mathbb{N}$ is an infinite set of primes, then the following are equivalent:

1. E, E' are K-isogenous;

2. $\ell \mid \#E(k_{\mathfrak{p}})$ if and only if $\ell \mid \#E'(k_{\mathfrak{p}})$, for every $\ell \in \Lambda$ and for every $\mathfrak{p} \in S$.

The natural generalization of this result to higher dimensional Abelian varieties ('faithfully of type GSp', cf. [4]) has recently been proven by N. Ratazzi in [6], relying on the method that we used in a preceding version of this paper [3]. We thank F. Pellarin for helping us simplify Step 3 of the proof.

E-mail addresses: chall14@uwyo.edu (C. Hall), antonella.perucca@mathematik.uni-regensburg.de (A. Perucca).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter O 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.01.003

1. Preliminaries

Let *K* be a number field, and after fixing a Galois closure \overline{K} of *K* let G_K be the absolute Galois group. Let ℓ be a prime number, and write μ_{ℓ} for the set of ℓ -th roots of unity in \overline{K} . Let *E* be an elliptic curve defined over *K*. We write $K_{\ell} := K(E[\ell])$ for the smallest extension of *K* over which the ℓ -th torsion points of $E(\overline{K})$ are defined. We call G_{ℓ} the Galois group of K_{ℓ}/K , which we consider embedded in $GL_2(\mathbb{F}_{\ell})$ after choosing a basis for $E[\ell]$. Let $H_{\ell} \subseteq G_{\ell}$ be the Galois group of $K_{\ell}/K(\mu_{\ell})$. Well-known properties of the Weil pairing imply that $H_{\ell} = G_{\ell} \cap SL_2(\mathbb{F}_{\ell})$. Finally, let $\mathcal{E} := \operatorname{End}_{\overline{K}}(E) \otimes \mathbb{Q}$, which we identify to a subfield of \overline{K} in one of the two possible ways. We will use the following independence result:

Proposition 1. If L/K is a finite extension then for all but finitely many primes ℓ we have $L \cap K_{\ell} \subseteq K\mathcal{E}$.

Proof. It suffices to show $L\mathcal{E} \cap K_{\ell}\mathcal{E} \subseteq K\mathcal{E}$ hence we may suppose $\mathcal{E} \subseteq K$. Note, there are only finitely many possibilities for $L \cap K_{\ell}$ and we may neglect the subextensions occurring only for finitely many ℓ . Suppose that $F \subseteq L$ satisfies $F = L \cap K_{\ell}$ for infinitely many ℓ . We are left to show that F = K. By [7, Th. 3 and §4.5, Cor.] we know $K_{\ell_1} \cap K_{\ell_2} = K$ for every sufficiently large prime numbers $\ell_1 \neq \ell_2$. Then the only possibility is F = K. \Box

Let *S* be a density-one set of primes of *K* of good reduction for *E*. If v_{ℓ} denotes the ℓ -adic valuation, we define ρ_{ℓ} to be the following map:

 $\rho_{\ell}: S \to \{0, 1\} \quad \mathfrak{p} \mapsto \min\{1, v_{\ell}(\#E(k_{\mathfrak{p}}))\}.$

There is a Galois–theoretic way to analyze ρ_ℓ :

Lemma 2. Suppose $\mathfrak{p} \in S$ is not over ℓ and does not ramify in K_{ℓ} and \mathfrak{q} is a prime of K_{ℓ} over \mathfrak{p} . If $\phi_{\mathfrak{q}} \in G_{\ell}$ is the Frobenius of \mathfrak{q} , then $\rho_{\ell}(\mathfrak{p}) = 1$ if and only if $\det(\phi_{\mathfrak{q}} - 1) = 0$.

Proof. The embedding $E(k_p) \to E(k_q)$ identifies $E(k_p)[\ell]$ with $\ker(\phi_q - 1) \subseteq E[\ell]$, hence $\ell \mid \#E(k_p)$ if and only if 1 is an eigenvalue of ϕ_q . \Box

Let E' be another elliptic curve over K and suppose that the primes in S are also of good reduction for E'. Define analogously K'_{ℓ} , G'_{ℓ} , H'_{ℓ} , \mathcal{E}' and ρ'_{ℓ} for E'. We use the notation $\Gamma_{\ell} \subseteq G_{\ell} \times G'_{\ell}$ for the Galois group of the compositum $K_{\ell}K'_{\ell}/K$.

Lemma 3. If $\rho_{\ell} = \rho'_{\ell}$, then det $(\gamma - 1)$, det $(\gamma' - 1)$ are both zero or both non-zero for every $(\gamma, \gamma') \in \Gamma_{\ell}$.

Proof. By the Cebotarev Density Theorem there is some prime $\mathfrak{p} \in S$ not over ℓ , unramified in $K_{\ell}K'_{\ell}$ and whose Frobenius conjugacy class in Γ_{ℓ} contains (γ, γ') . Lemma 2 implies the values $\rho_{\ell}(\mathfrak{p})$, $\rho'_{\ell}(\mathfrak{p})$ respectively identify whether or not $\det(\gamma - 1)$, $\det(\gamma' - 1)$ are non-zero, and thus the hypothesis $\rho_{\ell}(\mathfrak{p}) = \rho'_{\ell}(\mathfrak{p})$ implies the determinants are both zero or both non-zero. \Box

2. Proof of the theorem

The implication $1 \Rightarrow 2$ is trivial, so we prove $2 \Rightarrow 1$. Our assumption is that $\rho_{\ell} = \rho'_{\ell}$ for every $\ell \in \Lambda$.

2.1. Step 1: Reduction to the case $\mathcal{E}, \mathcal{E}' \subseteq K$

Consider the field $L := K \mathcal{E} \mathcal{E}'$. For a density-one set of primes q of L we have: q is of good reduction for E and E'; the prime $\mathfrak{p} := \mathfrak{q} \cap K$ is in S; the prime q has degree one hence $k_q = k_p$. We deduce that the assumptions of the theorem hold for L if they hold for K. The following general lemma completes this first step of the proof:

Lemma 4. If two elliptic curves E, E' defined over K are $K\mathcal{E}\mathcal{E}'$ -isogenous, then they are K-isogenous.

Proof. Let $L := K\mathcal{E}\mathcal{E}'$. Since E, E' are isogenous then $\mathcal{E} = \mathcal{E}'$ and so $L = K\mathcal{E} = K\mathcal{E}'$. Let S_1 be the density-one subset of primes \mathfrak{p} of K which have degree one, which neither ramify in L nor lie over 2 or 3 and which are of good reduction for E and E'. Let $a_{\mathfrak{p}}$ (respectively $a'_{\mathfrak{p}}$) denote the trace of the Frobenius at \mathfrak{p} for E (respectively E').

If q is a prime of *L* lying over p, then $a_q = a'_q$ since *E*, *E'* are *L*-isogenous. If p splits in *L*, then we have $a_p = a_q$ and $a'_q = a'_p$ since $k_q = k_p$, thus $a_p = a'_p$. Otherwise, $p \in S_1$ is inert, thus [5, Ch. 10, §4, Th. 10] implies *E*, *E'* have supersingular reduction over p. Moreover, since $\#k_p$ is prime and thus not a square, proposition [8, Th. 4.1] implies $a_p = a'_p = 0$. Therefore $a_p = a'_p$ for every $p \in S_1$ as claimed. We conclude by [1, Cor. 2] that *E* and *E'* are *K*-isogenous.

2.2. Step 2: The curves E, E' are \overline{K} -isogenous

By [2, Th. A] (which is a refinement of [7, Lem. 9 and Th. 7]) it suffices to show that there are infinitely many prime numbers ℓ such that $K_{\ell} = K'_{\ell}$.

Lemma 5. For all but finitely many $\ell \in \Lambda$ we have $K_{\ell} = K'_{\ell}$.

Proof. Let $\ell \in \Lambda$, and without loss of generality suppose $K_{\ell} \nsubseteq K'_{\ell}$. This means that the kernel of the projection $\Gamma_{\ell} \to G'_{\ell}$ is non-trivial. This kernel projects to a non-trivial normal subgroup of G_{ℓ} , which is contained in H_{ℓ} because its elements fix $K(\mu_{\ell}) \subseteq K'_{\ell}$. Since $\mathcal{E} \subseteq K$ by the first step, for all but finitely many ℓ either $\mathcal{E} = \mathbb{Q}$ and $G_{\ell} = \operatorname{GL}_2(\mathbb{F}_{\ell})$ or $\mathcal{E} \neq \mathbb{Q}$ and G_{ℓ} is a Cartan subgroup of $\operatorname{GL}_2(\mathbb{F}_{\ell})$, see [7, Th. 2 and §4.5, Cor.].

In the first case, $\gamma = -1$ lies in every non-trivial normal subgroup of $H_{\ell} = \operatorname{SL}_2(\mathbb{F}_{\ell})$ (cf. [2, Lem. 2.2]). In the second case, every $\gamma \in H_{\ell}$ is semisimple and we know det($\gamma = 1$, so if $\gamma \neq 1$ we have det($\gamma = 1$) $\neq 0$. Either way, we can find an element $(\gamma, 1) \in \Gamma_{\ell}$ satisfying det($\gamma = 1$) $\neq 0$. Lemma 3 then implies $\rho_{\ell} \neq \rho'_{\ell}$, contradicting $\ell \in \Lambda$. \Box

2.3. Step 3: Every \overline{K} -isogeny between E, E' is defined over K

We have two elliptic curves E, E' over a number field K that are \bar{K} -isogenous and such that $\mathcal{E} = \mathcal{E}' \subseteq K$. Every \bar{K} -isogeny between such curves is defined over a finite extension of K with degree at most 6, as the following lemma shows. Let $\mu \subset \mathcal{E}^{\times}$ be the subgroup of roots of unity and $\mathbb{Z}_{\mathcal{E}} \subset \mathcal{E}$ be the ring of integers. Let $f : E \to E'$ be a \bar{K} -isogeny of degree $d \ge 1$, and let $\hat{f} : E' \to E$ be the \bar{K} -isogeny satisfying $\hat{f} \circ f = d$. We write σf for the transform of f by $\sigma \in G$ and we define δ to be the following map:

$$\delta: G_K \to \mathcal{E}^{\times} \quad \sigma \mapsto \frac{1}{d} (\hat{f} \circ \sigma f).$$

Lemma 6. The map δ is a group homomorphism with image contained in μ .

Proof. For every $\sigma_1, \sigma_2 \in G_K$, since $\sigma_1 f \circ \sigma_1 \hat{f} = d$ and recalling that the action of G_K on $\mathcal{E} \subseteq K$ is trivial, we have

$$\delta(\sigma_1 \sigma_2) = \frac{1}{d} \left(\hat{f} \circ \sigma_1 \sigma_2 f \right) = \frac{1}{d^2} \left(\hat{f} \circ \sigma_1 f \circ \sigma_1 \hat{f} \circ \sigma_1 \sigma_2 f \right) = \delta(\sigma_1) \cdot \sigma_1 \delta(\sigma_2) = \delta(\sigma_1) \cdot \delta(\sigma_2)$$

hence δ is a homomorphism. Since f is defined over a finite extension of K, the image of δ is a finite subgroup of \mathcal{E}^{\times} so it is contained in μ . \Box

Suppose that the curves E, E' also satisfy the assumptions of our theorem. We take $\sigma \in G_K$ and show that $\sigma f = f$, or equivalently $\delta(\sigma) = 1$. To do so, we work with one $\ell \in \Lambda$, to be chosen sufficiently large. We take ℓ not dividing d, and such that for every $\zeta \in \mu \setminus \{1\}$ we have $\zeta - 1 \notin \ell \mathbb{Z}_{\mathcal{E}}$.

Let $L \subseteq \overline{K}$ be the smallest Galois extension of K where f is defined. By Proposition 1 and Lemma 5, up to excluding finitely many ℓ we may suppose that $L \cap K_{\ell}K'_{\ell} = K$. Then we may restrict to the case where $\sigma \in G_K$ induces the identity map on K_{ℓ} and K'_{ℓ} . This means that $E[\ell]$ is contained in the kernel of $\sigma f - f$, so we have

$$(\delta(\sigma) - 1) = \hat{f} \circ (^{\sigma}f - f) \in \ell \mathbb{Z}_{\mathcal{E}}.$$

Since ℓ and d are coprime, we deduce that $\delta(\sigma) - 1$ is in $\ell \mathbb{Z}_{\mathcal{E}}$, which implies $\delta(\sigma) = 1$.

References

- [2] G. Frey, M. Jarden, Horizontal isogeny theorems, Forum Math. 14 (6) (2002) 931-952.
- [3] C. Hall, A. Perucca, Radical characterizations of elliptic curves, preprint, arXiv:1109.2440, 2011.
- [4] M. Hindry, N. Ratazzi, Points de torsion sur les variétés abéliennes de type GSp, J. Inst. Math. Jussieu 11 (1) (2012) 27-65.
- [5] S. Lang, Elliptic Functions, second edition, Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987.
- [6] N. Ratazzi, Isogénies horizontales et classes d'isogénies de variétés abéliennes, preprint, arXiv:1211.4387, 2012.
- [7] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (4) (1972) 259-331.
- [8] W.C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 4 (2) (1969) 521–560.

G. Faltings, Finiteness theorems for Abelian varieties over number fields, in: G. Cornell, J.H. Silverman (Eds.), Arithmetic Geometry, Springer-Verlag, New York, 1986, pp. 9–27.