On the prime divisors of the number of points on an elliptic curve

Autour des diviseurs premiers du nombre des points sur une courbe elliptique

Chris Hall ${ }^{\text {a }}$, Antonella Perucca ${ }^{\text {b }}$
${ }^{\text {a }}$ University of Wyoming, United States
${ }^{\text {b }}$ University of Regensburg, Germany

A R T I C L E I N F O

Article history:

Received 9 November 2012
Accepted after revision 9 January 2013
Available online 29 January 2013
Presented by Jean-Pierre Serre

Abstract

Let E be an elliptic curve defined over a number field K and let S be a density-one set of primes of K of good reduction for E. Faltings proved in 1983 that the K-isogeny class of E is characterized by the function $\mathfrak{p} \mapsto \# E\left(k_{\mathfrak{p}}\right)$, which maps a prime $\mathfrak{p} \in S$ to the order of the group of points of E over the corresponding field $k_{\mathfrak{p}}$. We show that, in this statement, the integer $\# E\left(k_{\mathfrak{p}}\right)$ can be replaced by its radical.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

R É S U M É

Soit E une courbe elliptique définie sur un corps de nombres K, et soit S un ensemble de densité 1 de places de K en lesquelles E a bonne réduction. Faltings a montré en 1983 que la classe de K-isogénie de E est caracterisée par la fonction $\mathfrak{p} \mapsto \# E\left(k_{\mathfrak{p}}\right)$, qui envoie chaque place $\mathfrak{p} \in S$ sur l'ordre du groupe des points de E sur le corps résiduel correspondant. On montre qu'il suffit de considérer les nombres premiers divisant cet ordre.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let E, E^{\prime} be elliptic curves defined over a number field K. Let S be a density-one set of primes of K of good reduction for E and E^{\prime}. For every $\mathfrak{p} \in S$ write $k_{\mathfrak{p}}$ for the residue field. Faltings proved in 1983 that the curves E, E^{\prime} are K-isogenous if and only if for every prime $\mathfrak{p} \in S$ they have the same number of points over the residue field: $\# E\left(k_{\mathfrak{p}}\right)=\# E^{\prime}\left(k_{\mathfrak{p}}\right)$ (cf. [1, Cor. 2]). A weaker condition that one could ask for is that these two integers have the same radical, that is, $\ell \mid \# E\left(k_{\mathfrak{p}}\right)$ if and only if $\ell \mid \# E^{\prime}\left(k_{\mathfrak{p}}\right)$, for every prime number ℓ. We show that this is indeed enough. More precisely:

Theorem. Suppose E, E^{\prime} are elliptic curves over a number field K, and let S be a density-one set of primes of K over which E, E^{\prime} have good reduction. If $\Lambda \subseteq \mathbb{N}$ is an infinite set of primes, then the following are equivalent:

1. E, E^{\prime} are K-isogenous;
2. $\ell \mid \# E\left(k_{\mathfrak{p}}\right)$ if and only if $\ell \mid \# E^{\prime}\left(k_{\mathfrak{p}}\right)$, for every $\ell \in \Lambda$ and for every $\mathfrak{p} \in S$.

The natural generalization of this result to higher dimensional Abelian varieties ('faithfully of type GSp', cf. [4]) has recently been proven by N . Ratazzi in [6], relying on the method that we used in a preceding version of this paper [3]. We thank F. Pellarin for helping us simplify Step 3 of the proof.

[^0]
1. Preliminaries

Let K be a number field, and after fixing a Galois closure \bar{K} of K let G_{K} be the absolute Galois group. Let ℓ be a prime number, and write μ_{ℓ} for the set of ℓ-th roots of unity in \bar{K}. Let E be an elliptic curve defined over K. We write $K_{\ell}:=K(E[\ell])$ for the smallest extension of K over which the ℓ-th torsion points of $E(\bar{K})$ are defined. We call G_{ℓ} the Galois group of K_{ℓ} / K, which we consider embedded in $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ after choosing a basis for $E[\ell]$. Let $H_{\ell} \subseteq G_{\ell}$ be the Galois group of $K_{\ell} / K\left(\mu_{\ell}\right)$. Well-known properties of the Weil pairing imply that $H_{\ell}=G_{\ell} \cap \mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$. Finally, let $\mathcal{E}:=\operatorname{End}_{\bar{K}}(E) \otimes \mathbb{Q}$, which we identify to a subfield of \bar{K} in one of the two possible ways. We will use the following independence result:

Proposition 1. If L / K is a finite extension then for all but finitely many primes ℓ we have $L \cap K_{\ell} \subseteq K \mathcal{E}$.
Proof. It suffices to show $L \mathcal{E} \cap K_{\ell} \mathcal{E} \subseteq K \mathcal{E}$ hence we may suppose $\mathcal{E} \subseteq K$. Note, there are only finitely many possibilities for $L \cap K_{\ell}$ and we may neglect the subextensions occurring only for finitely many ℓ. Suppose that $F \subseteq L$ satisfies $F=L \cap K_{\ell}$ for infinitely many ℓ. We are left to show that $F=K$. By [7, Th. 3 and $\S 4.5$, Cor.] we know $K_{\ell_{1}} \cap K_{\ell_{2}}=K$ for every sufficiently large prime numbers $\ell_{1} \neq \ell_{2}$. Then the only possibility is $F=K$.

Let S be a density-one set of primes of K of good reduction for E. If v_{ℓ} denotes the ℓ-adic valuation, we define ρ_{ℓ} to be the following map:

$$
\rho_{\ell}: S \rightarrow\{0,1\} \quad \mathfrak{p} \mapsto \min \left\{1, v_{\ell}\left(\# E\left(k_{\mathfrak{p}}\right)\right)\right\}
$$

There is a Galois-theoretic way to analyze ρ_{ℓ} :
Lemma 2. Suppose $\mathfrak{p} \in S$ is not over ℓ and does not ramify in K_{ℓ} and \mathfrak{q} is a prime of K_{ℓ} over \mathfrak{p}. If $\phi_{\mathfrak{q}} \in G_{\ell}$ is the Frobenius of \mathfrak{q}, then $\rho_{\ell}(\mathfrak{p})=1$ if and only if $\operatorname{det}\left(\phi_{\mathfrak{q}}-1\right)=0$.

Proof. The embedding $E\left(k_{\mathfrak{p}}\right) \rightarrow E\left(k_{\mathfrak{q}}\right)$ identifies $E\left(k_{\mathfrak{p}}\right)[\ell]$ with $\operatorname{ker}\left(\phi_{q}-1\right) \subseteq E[\ell]$, hence $\ell \mid \# E\left(k_{\mathfrak{p}}\right)$ if and only if 1 is an eigenvalue of $\phi_{\mathfrak{q}}$.

Let E^{\prime} be another elliptic curve over K and suppose that the primes in S are also of good reduction for E^{\prime}. Define analogously $K_{\ell}^{\prime}, G_{\ell}^{\prime}, H_{\ell}^{\prime}, \mathcal{E}^{\prime}$ and ρ_{ℓ}^{\prime} for E^{\prime}. We use the notation $\Gamma_{\ell} \subseteq G_{\ell} \times G_{\ell}^{\prime}$ for the Galois group of the compositum $K_{\ell} K_{\ell}^{\prime} / K$.

Lemma 3. If $\rho_{\ell}=\rho_{\ell}^{\prime}$, then $\operatorname{det}(\gamma-1), \operatorname{det}\left(\gamma^{\prime}-1\right)$ are both zero or both non-zero for every $\left(\gamma, \gamma^{\prime}\right) \in \Gamma_{\ell}$.
Proof. By the Cebotarev Density Theorem there is some prime $\mathfrak{p} \in S$ not over ℓ, unramified in $K_{\ell} K_{\ell}^{\prime}$ and whose Frobenius conjugacy class in Γ_{ℓ} contains $\left(\gamma, \gamma^{\prime}\right)$. Lemma 2 implies the values $\rho_{\ell}(\mathfrak{p}), \rho_{\ell}^{\prime}(\mathfrak{p})$ respectively identify whether or not $\operatorname{det}(\gamma-1), \operatorname{det}\left(\gamma^{\prime}-1\right)$ are non-zero, and thus the hypothesis $\rho_{\ell}(\mathfrak{p})=\rho_{\ell}^{\prime}(\mathfrak{p})$ implies the determinants are both zero or both non-zero.

2. Proof of the theorem

The implication $1 \Rightarrow 2$ is trivial, so we prove $2 \Rightarrow 1$. Our assumption is that $\rho_{\ell}=\rho_{\ell}^{\prime}$ for every $\ell \in \Lambda$.

2.1. Step 1: Reduction to the case $\mathcal{E}, \mathcal{E}^{\prime} \subseteq K$

Consider the field $L:=K \mathcal{E E} \mathcal{E}^{\prime}$. For a density-one set of primes \mathfrak{q} of L we have: \mathfrak{q} is of good reduction for E and E^{\prime}; the prime $\mathfrak{p}:=\mathfrak{q} \cap K$ is in S; the prime \mathfrak{q} has degree one hence $k_{\mathfrak{q}}=k_{\mathfrak{p}}$. We deduce that the assumptions of the theorem hold for L if they hold for K. The following general lemma completes this first step of the proof:

Lemma 4. If two elliptic curves E, E^{\prime} defined over K are $K \mathcal{E E} \mathcal{E}^{\prime}$-isogenous, then they are K-isogenous.
Proof. Let $L:=K \mathcal{E} \mathcal{E}^{\prime}$. Since E, E^{\prime} are isogenous then $\mathcal{E}=\mathcal{E}^{\prime}$ and so $L=K \mathcal{E}=K \mathcal{E}^{\prime}$. Let S_{1} be the density-one subset of primes \mathfrak{p} of K which have degree one, which neither ramify in L nor lie over 2 or 3 and which are of good reduction for E and E^{\prime}. Let $a_{\mathfrak{p}}$ (respectively $a_{\mathfrak{p}}^{\prime}$) denote the trace of the Frobenius at \mathfrak{p} for E (respectively E^{\prime}).

If \mathfrak{q} is a prime of L lying over \mathfrak{p}, then $a_{\mathfrak{q}}=a_{\mathfrak{q}}^{\prime}$ since E, E^{\prime} are L-isogenous. If \mathfrak{p} splits in L, then we have $a_{\mathfrak{p}}=a_{\mathfrak{q}}$ and $a_{\mathfrak{q}}^{\prime}=a_{\mathfrak{p}}^{\prime}$ since $k_{\mathfrak{q}}=k_{\mathfrak{p}}$, thus $a_{\mathfrak{p}}=a_{\mathfrak{p}}^{\prime}$. Otherwise, $\mathfrak{p} \in S_{1}$ is inert, thus [$5, \mathrm{Ch} .10, \S 4$, Th. 10] implies E, E^{\prime} have supersingular reduction over \mathfrak{p}. Moreover, since $\# k_{\mathfrak{p}}$ is prime and thus not a square, proposition [8, Th. 4.1] implies $a_{\mathfrak{p}}=a_{\mathfrak{p}}^{\prime}=0$. Therefore $a_{\mathfrak{p}}=a_{\mathfrak{p}}^{\prime}$ for every $\mathfrak{p} \in S_{1}$ as claimed. We conclude by [1, Cor. 2] that E and E^{\prime} are K-isogenous.

2.2. Step 2: The curves E, E^{\prime} are \bar{K}-isogenous

By [2, Th. A] (which is a refinement of [7, Lem. 9 and Th. 7]) it suffices to show that there are infinitely many prime numbers ℓ such that $K_{\ell}=K_{\ell}^{\prime}$.

Lemma 5. For all but finitely many $\ell \in \Lambda$ we have $K_{\ell}=K_{\ell}^{\prime}$.
Proof. Let $\ell \in \Lambda$, and without loss of generality suppose $K_{\ell} \nsubseteq K_{\ell}^{\prime}$. This means that the kernel of the projection $\Gamma_{\ell} \rightarrow G_{\ell}^{\prime}$ is non-trivial. This kernel projects to a non-trivial normal subgroup of G_{ℓ}, which is contained in H_{ℓ} because its elements fix $K\left(\mu_{\ell}\right) \subseteq K_{\ell}^{\prime}$. Since $\mathcal{E} \subseteq K$ by the first step, for all but finitely many ℓ either $\mathcal{E}=\mathbb{Q}$ and $G_{\ell}=\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$ or $\mathcal{E} \neq \mathbb{Q}$ and G_{ℓ} is a Cartan subgroup of $\mathrm{GL}_{2}\left(\mathbb{F}_{\ell}\right)$, see [$7, \mathrm{Th} .2$ and $\S 4.5$, Cor.].

In the first case, $\gamma=-1$ lies in every non-trivial normal subgroup of $H_{\ell}=\mathrm{SL}_{2}\left(\mathbb{F}_{\ell}\right)$ (cf. [2, Lem. 2.2]). In the second case, every $\gamma \in H_{\ell}$ is semisimple and we know $\operatorname{det}(\gamma)=1$, so if $\gamma \neq 1$ we have $\operatorname{det}(\gamma-1) \neq 0$. Either way, we can find an element $(\gamma, 1) \in \Gamma_{\ell}$ satisfying $\operatorname{det}(\gamma-1) \neq 0$. Lemma 3 then implies $\rho_{\ell} \neq \rho_{\ell}^{\prime}$, contradicting $\ell \in \Lambda$.

2.3. Step 3: Every \bar{K}-isogeny between E, E^{\prime} is defined over K

We have two elliptic curves E, E^{\prime} over a number field K that are \bar{K}-isogenous and such that $\mathcal{E}=\mathcal{E}^{\prime} \subseteq K$. Every \bar{K}-isogeny between such curves is defined over a finite extension of K with degree at most 6 , as the following lemma shows. Let $\mu \subset \mathcal{E}^{\times}$be the subgroup of roots of unity and $\mathbb{Z}_{\mathcal{E}} \subset \mathcal{E}$ be the ring of integers. Let $f: E \rightarrow E^{\prime}$ be a \bar{K}-isogeny of degree $d \geqslant 1$, and let $\hat{f}: E^{\prime} \rightarrow E$ be the \bar{K}-isogeny satisfying $\hat{f} \circ f=d$. We write ${ }^{\sigma} f$ for the transform of f by $\sigma \in G$ and we define δ to be the following map:

$$
\delta: G_{K} \rightarrow \mathcal{E}^{\times} \quad \sigma \mapsto \frac{1}{d}\left(\hat{f} \circ{ }^{\sigma} f\right)
$$

Lemma 6. The map δ is a group homomorphism with image contained in μ.
Proof. For every $\sigma_{1}, \sigma_{2} \in G_{K}$, since ${ }^{\sigma_{1}} f \circ{ }^{\sigma_{1}} \hat{f}=d$ and recalling that the action of G_{K} on $\mathcal{E} \subseteq K$ is trivial, we have

$$
\delta\left(\sigma_{1} \sigma_{2}\right)=\frac{1}{d}\left(\hat{f} \circ{ }^{\sigma_{1} \sigma_{2}} f\right)=\frac{1}{d^{2}}\left(\hat{f} \circ{ }^{\sigma_{1}} f \circ{ }^{\sigma_{1}} \hat{f} \circ{ }^{\sigma_{1} \sigma_{2}} f\right)=\delta\left(\sigma_{1}\right) \cdot{ }^{\sigma_{1}} \delta\left(\sigma_{2}\right)=\delta\left(\sigma_{1}\right) \cdot \delta\left(\sigma_{2}\right)
$$

hence δ is a homomorphism. Since f is defined over a finite extension of K, the image of δ is a finite subgroup of \mathcal{E}^{\times}so it is contained in μ.

Suppose that the curves E, E^{\prime} also satisfy the assumptions of our theorem. We take $\sigma \in G_{K}$ and show that ${ }^{\sigma} f=f$, or equivalently $\delta(\sigma)=1$. To do so, we work with one $\ell \in \Lambda$, to be chosen sufficiently large. We take ℓ not dividing d, and such that for every $\zeta \in \mu \backslash\{1\}$ we have $\zeta-1 \notin \ell \mathbb{Z}_{\mathcal{E}}$.

Let $L \subseteq \bar{K}$ be the smallest Galois extension of K where f is defined. By Proposition 1 and Lemma 5 , up to excluding finitely many ℓ we may suppose that $L \cap K_{\ell} K_{\ell}^{\prime}=K$. Then we may restrict to the case where $\sigma \in G_{K}$ induces the identity map on K_{ℓ} and K_{ℓ}^{\prime}. This means that $E[\ell]$ is contained in the kernel of ${ }^{\sigma} f-f$, so we have

$$
(\delta(\sigma)-1)=\hat{f} \circ\left({ }^{\sigma} f-f\right) \in \ell \mathbb{Z}_{\mathcal{E}}
$$

Since ℓ and d are coprime, we deduce that $\delta(\sigma)-1$ is in $\ell \mathbb{Z}_{\mathcal{E}}$, which implies $\delta(\sigma)=1$.

References

[1] G. Faltings, Finiteness theorems for Abelian varieties over number fields, in: G. Cornell, J.H. Silverman (Eds.), Arithmetic Geometry, Springer-Verlag, New York, 1986, pp. 9-27.
[2] G. Frey, M. Jarden, Horizontal isogeny theorems, Forum Math. 14 (6) (2002) 931-952.
[3] C. Hall, A. Perucca, Radical characterizations of elliptic curves, preprint, arXiv:1109.2440, 2011.
[4] M. Hindry, N. Ratazzi, Points de torsion sur les variétés abéliennes de type GSp, J. Inst. Math. Jussieu 11 (1) (2012) 27-65.
[5] S. Lang, Elliptic Functions, second edition, Graduate Texts in Mathematics, vol. 112, Springer-Verlag, New York, 1987.
[6] N. Ratazzi, Isogénies horizontales et classes d'isogénies de variétés abéliennes, preprint, arXiv:1211.4387, 2012.
[7] J.-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (4) (1972) 259-331.
[8] W.C. Waterhouse, Abelian varieties over finite fields, Ann. Sci. École Norm. Sup. 4 (2) (1969) 521-560.

[^0]: E-mail addresses: chall14@uwyo.edu (C. Hall), antonella.perucca@mathematik.uni-regensburg.de (A. Perucca).
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.01.003

