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We prove some algebraic results on the ring of matrix differential operators over a dif-
ferential field in the generality of non-commutative principal ideal rings. These results are
used in the theory of non-local Poisson structures.
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r é s u m é

Nous démontrons quelques résultats algébriques sur l’anneau des matrices d’opérateurs
différentiels sur un corps différentiel dans le cas général des anneaux principaux non
commutatifs. Ces résultats sont utilisés dans la théorie des structures de Poisson non lo-
cales.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

In our previous two papers [1,2] we established some algebraic properties of the ring of matrix differential operators
over a differential field. The problems naturally arose in the study of non-local Poisson structures [3,4].

Eventually we realized that the proofs of [2] can be simplified, so that our results hold in the full generality of left and
right principal ideal rings.

The new result which is not contained in our previous paper is Theorem 3.3, which is used in the theory of the non-local
Lenard–Magri scheme in [4].

2. General facts about principal ideal rings

Let R be a unital associative (not necessarily commutative) ring. Recall that a left (resp. right) ideal of R is an additive
subgroup I ⊂ R such that R I = I (resp. I R = I). The left (resp. right) principal ideal generated by a ∈ R is, by definition, Ra
(resp. aR).

Throughout the paper, we assume that the ring R is both a left and a right principal ideal ring, meaning that every left
ideal of R and every right ideal of R is principal.

Example 2.1. Let K be a differential field with a derivation ∂ , and let K[∂] be the ring of differential operators over K. It
is well known that K[∂] is a left and right principal ideal domain, see e.g. [1]. Let R = Mat�×�(K[∂]) be the ring of � × �

matrices with coefficients in K[∂]. By Theorem 2.2(a) below, the ring R is a left and right principal ideal ring as well. Note
also that K� is naturally a left R-module.
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Given an element a ∈ R , an element d ∈ R is called a right (resp. left) divisor of a if a = a1d (resp. a = da1) for some
a1 ∈ R . An element m ∈ R is called a left (resp. right) multiple of a if m = qa (resp. m = aq) for some q ∈ R .

Given elements a,b ∈ R , their right (resp. left) greatest common divisor is the generator d of the left (resp. right) ideal
generated by a and b: Ra + Rb = Rd (resp. aR + bR = dR). It is uniquely defined up to multiplication by an invertible
element. It follows that d is a right (resp. left) divisor of both a and b, and we have the Bezout identity d = ua + vb (resp.
d = au + bv) for some u, v ∈ R .

Similarly, the left (resp. right) least common multiple of a and b is an element m ∈ R , defined, uniquely up to multiplication
by an invertible element, as the generator of the intersection of the left (resp. right) principal ideals generated by a and
by b: Rm = Ra ∩ Rb (resp. mR = aR ∩ bR).

We say that a and b are right (resp. left) coprime if their right (resp. left) greatest common divisor is 1 (or invertible),
namely if the left (resp. right) ideal that they generate is the whole ring R: Ra + Rb = R (resp. aR + bR = R). Clearly, this
happens if and only if we have the Bezout identity ua + vb = 1 (resp. au + bv = 1) for some u, v ∈ R .

An element k ∈ R is called a right (resp. left) zero divisor if there exists k1 ∈ R\{0} such that k1k = 0 (resp. kk1 = 0). Note
that, if d is a right (resp. left) divisor of a, and d is a left (resp. right) zero divisor, then so is a. In particular, if either a or b
is not a left (resp. right) zero divisor, then their right (resp. left) greatest common divisor d is also not a left (resp. right)
zero divisor. A non-zero element b ∈ R is called regular if it is neither a left nor a right zero divisor.

The following results summarize some important properties of principal ideal rings that will be used in this paper.
Since a principal ideal ring is obviously Noetherian, one can use the powerful theory of non-commutative Noetherian rings
(see [6]).

Theorem 2.2. Let R be a left and right principal ideal ring. Then:

(a) The ring Mat�×�(R) of � × � matrices with entries in R is a left and right principal ideal ring.
(b) The sets of left and right zero divisors of R coincide. Hence, an element of R is regular if and only if it is not a left (or a right) zero

divisor.
(c) The set of regular elements of R satisfies the left (resp. right) Ore property: for a,b ∈ R with b regular, there exist a1,b1 ∈ R, with

b1 regular, such that ba1 = ab1 (resp. a1b = b1a).
(d) There exists the ring of fractions Q (R) containing R, consisting of left fractions ab−1 (or, equivalently, right fractions b−1a), with

a,b ∈ R and b regular.
(e) Given a,b ∈ R with b regular, there exists q ∈ R such that a + qb (resp. a + bq) is regular.
(f) Suppose that the ring R contains a central regular element r ∈ R such that r − 1 is regular too. Given a1,a2,b1,b2 ∈ R with b1 , b2

regular, there exists q ∈ R such that a1 + qb1 and a2 + qb2 (resp. a1 + b1q and a2 + b2q) are both regular.

Proof (by J.T. Stafford). Statement (a) is in [6, Prop. 3.4.10]. For part (b) [6, Cor. 4.1.9] shows that R is a direct sum R = A ⊕ B
of an Artinian ring A and a Noetherian semiprime ring B . Obviously the regular elements of A are just the units. By
Goldie’s Theorem the right regular elements of B are the same as the left regular elements, i.e. the regular elements (see [6,
Props. 2.3.4 and 2.3.5]). Since an element (a,b) ∈ R = A ⊕ B is regular if and only if a and b are both regular the same
conclusion holds for R . This proves (b). The equivalence of (c) and (d) is Ore’s Theorem [6, Thm. 2.1.12]. Part (c) then follows
from Goldie’s Theorem. It is routine to see that the regular elements of A ⊕ B form an Ore set if this is true for both A
and B . Of course this result is vacuously true for A while Goldie’s Theorem does it for B . Part (e) follows from [7, Cor. 2.5],
and part (f) is in [8]. �
Remark 2.3. As T. Stafford pointed out, the ring R = Z/2Z does not satisfy the property in part (f).

Remark 2.4. From the above theorem we immediately get the following simple observations.

(a) By Theorem 2.2(b) we have that if a = bc, then a is regular if and only if b and c are regular. In particular, any left or
right divisor of a regular element is regular.

(b) If b is regular and a arbitrary, then we can write their right (resp. left) least common multiple as ab1 = ba1 with b1
regular. This follows from the Ore property in Theorem 2.2(c). Indeed, let I = {b′ ∈ R | ab′ ∈ bR}. It is clearly a right ideal
of R . Hence, I = b1 R for some b1. Clearly, m = ab1 is the right least common multiple of a and b. By the Ore property,
there exists a regular element b̃ ∈ I . Hence, b̃ = b1c, and therefore b1 is regular too.

(c) It follows from the above observation that, if a and b are regular, so is their right (resp. left) least common multiple.
(d) If a = a1d, b = b1d (resp. a = da1, b = db1), and a1 and b1 are right (resp. left) coprime, then d is the right (resp. left)

greatest common divisor of a and b. Indeed, by the Bezout identity we have ua1 + vb1 = 1 (resp. a1u + b1 v = 1), which
implies ua + vb = d (resp. au + bv = d). But then Rd = Ra + Rb (resp. dR = aR + bR), proving the claim.

(e) Conversely, if a = a1d, b = b1d (resp. a = da1, b = db1), and d is the right (resp. left) greatest common divisor of a and b,
then, assuming that d is regular, we get that a1 and b1 are right (resp. left) coprime. Indeed, by the Bezout identity we
have d = ua + vb = (ua1 + vb1)d (resp. d = au + bv = d(a1u + b1 v)), and since by assumption d is regular it follows that
ua1 + vb1 = 1.
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3. Some arithmetic properties of principal ideal rings

Theorem 3.1. Let R be a left and right principal ideal ring and let Q (R) be its ring of fractions. Let f = ab−1 = a1b−1
1 ∈ Q (R) (resp.

f = b−1a = b−1
1 a1 ∈ Q (R)), with a,a1,b,b1 ∈ R and b, b1 regular, and assume that a1 and b1 are right (resp. left) coprime. Then

there exists a regular element q ∈ R such that a = a1q and b = b1q (resp. a = qa1 and b = qb1).

Proof. By assumption a1 and b1 are right coprime, hence we have the Bezout identity ua1 + vb1 = 1, for some u, v ∈ R . Let
q = ua + vb. We have

b1q = b1(ua + vb) = b1
(
uab−1 + v

)
b = b1

(
ua1b−1

1 + v
)
b = b1(ua1 + vb1)b

−1
1 b = b,

and

a1q = a1b−1
1 b1q = a1b−1

1 b = ab−1b = a.

Finally, q is regular since q = b−1
1 b is invertible in Q (R). �

Corollary 3.2. For every f ∈ Q (R) there is a “minimal” right (resp. left) fractional decomposition f = ab−1 (resp. f = b−1a) with a, b
right (resp. left) coprime. Any other right (resp. left) fractional decomposition is obtained from it by simultaneous multiplication of a
and b on the right (resp. left) by some regular element q ∈ R.

Proof. It follows immediately from Remark 2.4(d) and Theorem 3.1. �
Theorem 3.3. Let R be a left and right principal ideal ring, and let V be a left module over R. Assume that the ring R contains a central
regular element r ∈ R such that r − 1 is regular too. Let a,b ∈ R, with b regular, be left coprime. Let m = ab1 = ba1 be their right
least common multiple. Then, for every x, y ∈ V such that ax = by, there exists z ∈ V such that x = b1z and y = a1z. In particular,
aV ∩ bV = mV .

Proof. We first reduce to the case when a is regular. Indeed, let, by Theorem 2.2(e), q ∈ R be such that a + bq is regular.
Then it is immediate to check that the right least common multiple of a + bq and b is (a + bq)b1 = b(a1 + qb1). Moreover,
since by assumption ax = by, we have (a + bq)x = b(y +qx). Therefore, assuming that the theorem holds for regular a, there
exists z ∈ V such that x = b1z and y + qx = (a1 + qb1)z, which implies y = a1z, proving the claim.

Next, let us prove the theorem under the assumption that both a and b are regular. Since m = ab1 = ba1 is the right
least common multiple of a and b, it follows that a1 and b1 are right coprime, and therefore we have the Bezout identity

ub1 + va1 = 1, (3.1)

for some u, v ∈ R . After replacing u by u +qa and v by v −qb, Eq. (3.1) still holds. Hence, by Theorem 2.2(f), we can assume,
without loss of generality, that u and v are both regular. Moreover, by Remark 2.4(c), since by assumption both a and b are
regular, their right least common multiple is regular too, and therefore a1 and b1 are regular too. Multiplying in Q (R) both
sides of Eq. (3.1) on the left by u−1 and on the right by a−1

1 , we get

a−1b = (a1u)−1(1 − a1 v), (3.2)

and similarly, multiplying (3.1) on the left by v−1 and on the right by b−1
1 , we get

b−1a = (b1 v)−1(1 − b1u). (3.3)

Since, by assumption, a and b are left coprime, both fractions a−1b and b−1a are in their minimal fractional decomposition.
Hence, by Eqs. (3.2) and (3.3), there exist p,q ∈ R such that

1 − a1 v = pb, a1u = pa, (3.4)

1 − b1u = qa, b1 v = qb. (3.5)

Applying the first equation in (3.4) to y ∈ V and using the assumption ax = by and the second equation of (3.4), we get

y = a1 v y + pby = a1 v y + pax = a1(v y + ux),

and, similarly, applying the first equation in (3.5) to x ∈ V and using the second equation of (3.5), we get

x = b1ux + qax = b1ux + qby = b1(ux + v y).

Hence, the statement holds with z = ux + v y. �
If V is a left R-module and a ∈ R , we denote Ker a = {x ∈ V | ax = 0}.

Remark 3.4. If d is the right greatest common divisor of a and b in R , then Ker a ∩ Ker b = Ker d. Indeed, by the Bezout
identity we have b1a + a1b = d. Therefore Ker a ∩ Ker b ⊂ Ker d. The reverse inclusion is obvious.
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Corollary 3.5. Let R be as in Theorem 3.3, and let V be a left R-module. Let σ : R → R be an anti-automorphism of the ring R. Let
a,b ∈ R, with b regular, be right coprime, and suppose that σ(a)b = εσ (b)a, for some invertible central element ε ∈ R. Let x, y ∈ V
be such that σ(a)x = εσ (b)y. Then there exists z ∈ V such that x = bz and y = az.

Proof. First, since b is regular and σ is an anti-automorphism, σ(b) is regular too. Moreover, since by assumption a and b
are right coprime and σ is an anti-automorphism, it follows that σ(a) and σ(b) are left coprime.

We claim that the left least common multiple of a and b is equal to the right least common multiple of σ(a) and σ(b),
and it is given by m = σ(a)b = εσ (b)a. Indeed, clearly m is a common right multiple of σ(a) and σ(b). It is therefore a
right multiple of the minimal one: m1 = σ(a)b1 = σ(b)a1. Namely, there exists q ∈ R such that b = b1q and a = ε−1a1q. But
by assumption a and b are right coprime. Hence, q must be invertible, proving that m is the right least common multiple
of σ(a) and σ(b). The same argument proves that m is also the left least common multiple of a and b.

We can now apply Theorem 3.3 to σ(a) and σ(b), to deduce that there exists z ∈ V such that x = bz and ε y = εaz,
hence y = az. �

As in [2], Corollary 3.5 implies the following maximal isotropicity property important for the theory of Dirac struc-
tures [5,3].

Corollary 3.6. Let R be as in Theorem 3.3, and let V be a left R-module and let (·,·) : V × V → A be a non-degenerate symmetric
bi-additive pairing on V with values in an abelian group A. Let ∗ be an anti-involution of R such that (ax, y) = (x,a∗ y) for all a ∈ R
and x, y ∈ V . Extend the pairing (·,·) to a pairing 〈· | ·〉 on V ⊕ V with values in A, given by

〈x1 ⊕ x2 | y1 ⊕ y2〉 = (x1, y2) + (x2, y1),

for every x1, x2, y1, y2 ∈ V . Given two elements a,b ∈ R, we consider the following additive subgroup of V ⊕ V :

La,b = {bx ⊕ ax | x ∈ V } ⊂ V ⊕ V . (3.6)

(a) The subgroup La,b ⊂ V ⊕ V is isotropic with respect to the pairing 〈· | ·〉 if and only if a∗b + b∗a acts as 0 on V .
(b) If b is regular, a and b are right coprime, and a∗b + b∗a = 0, then the subgroup La,b ⊂ V ⊕ V is maximal isotropic.

Proof. Part (a) is straightforward and part (b) follows immediately from Corollary 3.5 with σ(a) = a∗ and ε = −1. �
Corollary 3.7. Let R be as in Theorem 3.3, and let V be a left R-module. Let a,b ∈ R, with b regular, be left coprime. Let m = ab1 = ba1
be their right least common multiple. Then Ker b = a1(Ker b1).

Proof. If k1 ∈ Ker b1, then b(a1k1) = ab1k1 = 0. Therefore, a1(Ker b1) ⊂ Ker b. We need to prove the opposite inclusion.
If k ∈ Ker b, we have a0 = 0 = bk. Hence, by Theorem 3.3, there exists z ∈ V such that 0 = b1z and k = a1z. Namely,
k ∈ a1(Ker b1). �
Remark 3.8. In the ring R = Mat�×� K[∂] of � × � matrix differential operators over a differential field K, the above Corol-
lary 3.7 implies that if b−1a = a1b−1

1 is a rational matrix pseudodifferential operator in its minimal left and right fractional
decompositions, then deg(b) = deg(b1) (where deg(b) is the degree of the Dieudonné determinant of b). Indeed, the frac-
tional decomposition b−1a being minimal means that a and b are left coprime. Hence, by Corollary 3.7 we have that
dim(Ker b) = dim(a1 Ker b1) in any differential field extension of K. Moreover, the fractional decomposition a1b−1

1 being
minimal means that Ker a1 ∩ Ker b1 = 0 in any differential field extension of K. The claim follows by the fact that deg b is
equal to the dimension of Ker b in the linear closure of K [2].
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