## Algebra

# Some remarks on non-commutative principal ideal rings 

Sylvain Carpentier ${ }^{\text {a }}$, Alberto De Sole ${ }^{\text {b }}$, Victor G. Kac ${ }^{\text {c }}$<br>a École normale supérieure, 75005 Paris, France<br>${ }^{\text {b }}$ Dipartimento di matematica, University of Rome-1, "La Sapienza", 00185 Roma, Italy<br>${ }^{\text {c }}$ Department of Mathematics, M.I.T., Cambridge, MA 02139, USA

## A R T I CLE IN F O

## Article history:

Received 10 January 2013
Accepted 18 January 2013
Available online 4 February 2013
Presented by Michèle Vergne


#### Abstract

We prove some algebraic results on the ring of matrix differential operators over a differential field in the generality of non-commutative principal ideal rings. These results are used in the theory of non-local Poisson structures.


© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## R É S U M É

Nous démontrons quelques résultats algébriques sur l'anneau des matrices d'opérateurs différentiels sur un corps différentiel dans le cas général des anneaux principaux non commutatifs. Ces résultats sont utilisés dans la théorie des structures de Poisson non locales.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

## 1. Introduction

In our previous two papers [1,2] we established some algebraic properties of the ring of matrix differential operators over a differential field. The problems naturally arose in the study of non-local Poisson structures [3,4].

Eventually we realized that the proofs of [2] can be simplified, so that our results hold in the full generality of left and right principal ideal rings.

The new result which is not contained in our previous paper is Theorem 3.3, which is used in the theory of the non-local Lenard-Magri scheme in [4].

## 2. General facts about principal ideal rings

Let $R$ be a unital associative (not necessarily commutative) ring. Recall that a left (resp. right) ideal of $R$ is an additive subgroup $I \subset R$ such that $R I=I$ (resp. $I R=I$ ). The left (resp. right) principal ideal generated by $a \in R$ is, by definition, $R a$ (resp. $a$ ).

Throughout the paper, we assume that the ring $R$ is both a left and a right principal ideal ring, meaning that every left ideal of $R$ and every right ideal of $R$ is principal.

Example 2.1. Let $\mathcal{K}$ be a differential field with a derivation $\partial$, and let $\mathcal{K}[\partial]$ be the ring of differential operators over $\mathcal{K}$. It is well known that $\mathcal{K}[\partial]$ is a left and right principal ideal domain, see e.g. [1]. Let $\mathcal{R}=$ Mat $_{\ell \times \ell}(\mathcal{K}[\partial])$ be the ring of $\ell \times \ell$ matrices with coefficients in $\mathcal{K}[\partial]$. By Theorem 2.2(a) below, the ring $\mathcal{R}$ is a left and right principal ideal ring as well. Note also that $\mathcal{K}^{\ell}$ is naturally a left $\mathcal{R}$-module.

[^0]1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Given an element $a \in R$, an element $d \in R$ is called a right (resp. left) divisor of $a$ if $a=a_{1} d$ (resp. $a=d a_{1}$ ) for some $a_{1} \in R$. An element $m \in R$ is called a left (resp. right) multiple of $a$ if $m=q a$ (resp. $m=a q$ ) for some $q \in R$.

Given elements $a, b \in R$, their right (resp. left) greatest common divisor is the generator $d$ of the left (resp. right) ideal generated by $a$ and $b: R a+R b=R d$ (resp. $a R+b R=d R$ ). It is uniquely defined up to multiplication by an invertible element. It follows that $d$ is a right (resp. left) divisor of both $a$ and $b$, and we have the Bezout identity $d=u a+v b$ (resp. $d=a u+b v$ ) for some $u, v \in R$.

Similarly, the left (resp. right) least common multiple of $a$ and $b$ is an element $m \in R$, defined, uniquely up to multiplication by an invertible element, as the generator of the intersection of the left (resp. right) principal ideals generated by $a$ and by $b: R m=R a \cap R b$ (resp. $m R=a R \cap b R$ ).

We say that $a$ and $b$ are right (resp. left) coprime if their right (resp. left) greatest common divisor is 1 (or invertible), namely if the left (resp. right) ideal that they generate is the whole ring $R: R a+R b=R$ (resp. $a R+b R=R$ ). Clearly, this happens if and only if we have the Bezout identity $u a+v b=1$ (resp. $a u+b v=1$ ) for some $u, v \in R$.

An element $k \in R$ is called a right (resp. left) zero divisor if there exists $k_{1} \in R \backslash\{0\}$ such that $k_{1} k=0$ (resp. $k k_{1}=0$ ). Note that, if $d$ is a right (resp. left) divisor of $a$, and $d$ is a left (resp. right) zero divisor, then so is $a$. In particular, if either $a$ or $b$ is not a left (resp. right) zero divisor, then their right (resp. left) greatest common divisor $d$ is also not a left (resp. right) zero divisor. A non-zero element $b \in R$ is called regular if it is neither a left nor a right zero divisor.

The following results summarize some important properties of principal ideal rings that will be used in this paper. Since a principal ideal ring is obviously Noetherian, one can use the powerful theory of non-commutative Noetherian rings (see [6]).

Theorem 2.2. Let $R$ be a left and right principal ideal ring. Then:
(a) The ring $\operatorname{Mat}_{\ell \times \ell}(R)$ of $\ell \times \ell$ matrices with entries in $R$ is a left and right principal ideal ring.
(b) The sets of left and right zero divisors of $R$ coincide. Hence, an element of $R$ is regular if and only if it is not a left (or a right) zero divisor.
(c) The set of regular elements of $R$ satisfies the left (resp. right) Ore property: for $a, b \in R$ with $b$ regular, there exist $a_{1}, b_{1} \in R$, with $b_{1}$ regular, such that $b a_{1}=a b_{1}\left(\right.$ resp. $\left.a_{1} b=b_{1} a\right)$.
(d) There exists the ring of fractions $Q(R)$ containing $R$, consisting of left fractions $a b^{-1}$ (or, equivalently, right fractions $b^{-1} a$ ), with $a, b \in R$ and $b$ regular.
(e) Given $a, b \in R$ with $b$ regular, there exists $q \in R$ such that $a+q b$ (resp. $a+b q$ ) is regular.
(f) Suppose that the ring $R$ contains a central regular element $r \in R$ such that $r-1$ is regular too. Given $a_{1}, a_{2}, b_{1}, b_{2} \in R$ with $b_{1}, b_{2}$ regular, there exists $q \in R$ such that $a_{1}+q b_{1}$ and $a_{2}+q b_{2}$ (resp. $a_{1}+b_{1} q$ and $a_{2}+b_{2} q$ ) are both regular.

Proof (by J.T. Stafford). Statement (a) is in [6, Prop. 3.4.10]. For part (b) [6, Cor. 4.1.9] shows that $R$ is a direct sum $R=A \oplus B$ of an Artinian ring $A$ and a Noetherian semiprime ring $B$. Obviously the regular elements of $A$ are just the units. By Goldie's Theorem the right regular elements of $B$ are the same as the left regular elements, i.e. the regular elements (see [6, Props. 2.3.4 and 2.3.5]). Since an element $(a, b) \in R=A \oplus B$ is regular if and only if $a$ and $b$ are both regular the same conclusion holds for $R$. This proves (b). The equivalence of (c) and (d) is Ore's Theorem [6, Thm. 2.1.12]. Part (c) then follows from Goldie's Theorem. It is routine to see that the regular elements of $A \oplus B$ form an Ore set if this is true for both $A$ and B. Of course this result is vacuously true for $A$ while Goldie's Theorem does it for B. Part (e) follows from [7, Cor. 2.5], and part (f) is in [8].

Remark 2.3. As T. Stafford pointed out, the ring $R=\mathbb{Z} / 2 \mathbb{Z}$ does not satisfy the property in part (f).

Remark 2.4. From the above theorem we immediately get the following simple observations.
(a) By Theorem 2.2(b) we have that if $a=b c$, then $a$ is regular if and only if $b$ and $c$ are regular. In particular, any left or right divisor of a regular element is regular.
(b) If $b$ is regular and $a$ arbitrary, then we can write their right (resp. left) least common multiple as $a b_{1}=b a_{1}$ with $b_{1}$ regular. This follows from the Ore property in Theorem 2.2(c). Indeed, let $I=\left\{b^{\prime} \in R \mid a b^{\prime} \in b R\right\}$. It is clearly a right ideal of $R$. Hence, $I=b_{1} R$ for some ${\underset{\sim}{b}}_{1}$. Clearly, $m=a b_{1}$ is the right least common multiple of $a$ and $b$. By the Ore property, there exists a regular element $\widetilde{b} \in I$. Hence, $\widetilde{b}=b_{1} c$, and therefore $b_{1}$ is regular too.
(c) It follows from the above observation that, if $a$ and $b$ are regular, so is their right (resp. left) least common multiple.
(d) If $a=a_{1} d, b=b_{1} d$ (resp. $a=d a_{1}, b=d b_{1}$ ), and $a_{1}$ and $b_{1}$ are right (resp. left) coprime, then $d$ is the right (resp. left) greatest common divisor of $a$ and $b$. Indeed, by the Bezout identity we have $u a_{1}+v b_{1}=1$ (resp. $a_{1} u+b_{1} v=1$ ), which implies $u a+v b=d$ (resp. $a u+b v=d$ ). But then $R d=R a+R b$ (resp. $d R=a R+b R$ ), proving the claim.
(e) Conversely, if $a=a_{1} d, b=b_{1} d$ (resp. $a=d a_{1}, b=d b_{1}$ ), and $d$ is the right (resp. left) greatest common divisor of $a$ and $b$, then, assuming that $d$ is regular, we get that $a_{1}$ and $b_{1}$ are right (resp. left) coprime. Indeed, by the Bezout identity we have $d=u a+v b=\left(u a_{1}+v b_{1}\right) d$ (resp. $d=a u+b v=d\left(a_{1} u+b_{1} v\right)$ ), and since by assumption $d$ is regular it follows that $u a_{1}+v b_{1}=1$.

## 3. Some arithmetic properties of principal ideal rings

Theorem 3.1. Let $R$ be a left and right principal ideal ring and let $Q(R)$ be its ring of fractions. Let $f=a b^{-1}=a_{1} b_{1}^{-1} \in Q(R)$ (resp. $f=b^{-1} a=b_{1}^{-1} a_{1} \in Q(R)$ ), with $a, a_{1}, b, b_{1} \in R$ and $b, b_{1}$ regular, and assume that $a_{1}$ and $b_{1}$ are right (resp. left) coprime. Then there exists a regular element $q \in R$ such that $a=a_{1} q$ and $b=b_{1} q$ (resp. $a=q a_{1}$ and $b=q b_{1}$ ).

Proof. By assumption $a_{1}$ and $b_{1}$ are right coprime, hence we have the Bezout identity $u a_{1}+v b_{1}=1$, for some $u, v \in R$. Let $q=u a+v b$. We have

$$
b_{1} q=b_{1}(u a+v b)=b_{1}\left(u a b^{-1}+v\right) b=b_{1}\left(u a_{1} b_{1}^{-1}+v\right) b=b_{1}\left(u a_{1}+v b_{1}\right) b_{1}^{-1} b=b
$$

and

$$
a_{1} q=a_{1} b_{1}^{-1} b_{1} q=a_{1} b_{1}^{-1} b=a b^{-1} b=a
$$

Finally, $q$ is regular since $q=b_{1}^{-1} b$ is invertible in $Q(R)$.
Corollary 3.2. For every $f \in Q(R)$ there is a "minimal" right (resp. left) fractional decomposition $f=a b^{-1}$ (resp. $f=b^{-1} a$ ) with $a, b$ right (resp. left) coprime. Any other right (resp. left) fractional decomposition is obtained from it by simultaneous multiplication of a and $b$ on the right (resp. left) by some regular element $q \in R$.

Proof. It follows immediately from Remark 2.4(d) and Theorem 3.1.
Theorem 3.3. Let $R$ be a left and right principal ideal ring, and let $V$ be a left module over $R$. Assume that the ring $R$ contains a central regular element $r \in R$ such that $r-1$ is regular too. Let $a, b \in R$, with $b$ regular, be left coprime. Let $m=a b_{1}=b a_{1}$ be their right least common multiple. Then, for every $x, y \in V$ such that $a x=b y$, there exists $z \in V$ such that $x=b_{1} z$ and $y=a_{1} z$. In particular, $a V \cap b V=m V$.

Proof. We first reduce to the case when $a$ is regular. Indeed, let, by Theorem 2.2(e), $q \in R$ be such that $a+b q$ is regular. Then it is immediate to check that the right least common multiple of $a+b q$ and $b$ is $(a+b q) b_{1}=b\left(a_{1}+q b_{1}\right)$. Moreover, since by assumption $a x=b y$, we have $(a+b q) x=b(y+q x)$. Therefore, assuming that the theorem holds for regular $a$, there exists $z \in V$ such that $x=b_{1} z$ and $y+q x=\left(a_{1}+q b_{1}\right) z$, which implies $y=a_{1} z$, proving the claim.

Next, let us prove the theorem under the assumption that both $a$ and $b$ are regular. Since $m=a b_{1}=b a_{1}$ is the right least common multiple of $a$ and $b$, it follows that $a_{1}$ and $b_{1}$ are right coprime, and therefore we have the Bezout identity

$$
\begin{equation*}
u b_{1}+v a_{1}=1 \tag{3.1}
\end{equation*}
$$

for some $u, v \in R$. After replacing $u$ by $u+q a$ and $v$ by $v-q b$, Eq. (3.1) still holds. Hence, by Theorem 2.2(f), we can assume, without loss of generality, that $u$ and $v$ are both regular. Moreover, by Remark 2.4(c), since by assumption both $a$ and $b$ are regular, their right least common multiple is regular too, and therefore $a_{1}$ and $b_{1}$ are regular too. Multiplying in $Q(R)$ both sides of Eq. (3.1) on the left by $u^{-1}$ and on the right by $a_{1}^{-1}$, we get

$$
\begin{equation*}
a^{-1} b=\left(a_{1} u\right)^{-1}\left(1-a_{1} v\right) \tag{3.2}
\end{equation*}
$$

and similarly, multiplying (3.1) on the left by $v^{-1}$ and on the right by $b_{1}^{-1}$, we get

$$
\begin{equation*}
b^{-1} a=\left(b_{1} v\right)^{-1}\left(1-b_{1} u\right) \tag{3.3}
\end{equation*}
$$

Since, by assumption, $a$ and $b$ are left coprime, both fractions $a^{-1} b$ and $b^{-1} a$ are in their minimal fractional decomposition. Hence, by Eqs. (3.2) and (3.3), there exist $p, q \in R$ such that

$$
\begin{array}{ll}
1-a_{1} v=p b, & a_{1} u=p a \\
1-b_{1} u=q a, & b_{1} v=q b \tag{3.5}
\end{array}
$$

Applying the first equation in (3.4) to $y \in V$ and using the assumption $a x=b y$ and the second equation of (3.4), we get

$$
y=a_{1} v y+p b y=a_{1} v y+p a x=a_{1}(v y+u x)
$$

and, similarly, applying the first equation in (3.5) to $x \in V$ and using the second equation of (3.5), we get

$$
x=b_{1} u x+q a x=b_{1} u x+q b y=b_{1}(u x+v y)
$$

Hence, the statement holds with $z=u x+v y$.
If $V$ is a left $R$-module and $a \in R$, we denote $\operatorname{Ker} a=\{x \in V \mid a x=0\}$.
Remark 3.4. If $d$ is the right greatest common divisor of $a$ and $b$ in $R$, then $\operatorname{Ker} a \cap \operatorname{Ker} b=\operatorname{Ker} d$. Indeed, by the Bezout identity we have $b_{1} a+a_{1} b=d$. Therefore $\operatorname{Ker} a \cap \operatorname{Ker} b \subset \operatorname{Ker} d$. The reverse inclusion is obvious.

Corollary 3.5. Let $R$ be as in Theorem 3.3, and let $V$ be a left $R$-module. Let $\sigma: R \rightarrow R$ be an anti-automorphism of the ring $R$. Let $a, b \in R$, with $b$ regular, be right coprime, and suppose that $\sigma(a) b=\epsilon \sigma(b) a$, for some invertible central element $\epsilon \in R$. Let $x, y \in V$ be such that $\sigma(a) x=\epsilon \sigma(b) y$. Then there exists $z \in V$ such that $x=b z$ and $y=a z$.

Proof. First, since $b$ is regular and $\sigma$ is an anti-automorphism, $\sigma(b)$ is regular too. Moreover, since by assumption $a$ and $b$ are right coprime and $\sigma$ is an anti-automorphism, it follows that $\sigma(a)$ and $\sigma(b)$ are left coprime.

We claim that the left least common multiple of $a$ and $b$ is equal to the right least common multiple of $\sigma(a)$ and $\sigma(b)$, and it is given by $m=\sigma(a) b=\epsilon \sigma(b) a$. Indeed, clearly $m$ is a common right multiple of $\sigma(a)$ and $\sigma(b)$. It is therefore a right multiple of the minimal one: $m_{1}=\sigma(a) b_{1}=\sigma(b) a_{1}$. Namely, there exists $q \in R$ such that $b=b_{1} q$ and $a=\epsilon^{-1} a_{1} q$. But by assumption $a$ and $b$ are right coprime. Hence, $q$ must be invertible, proving that $m$ is the right least common multiple of $\sigma(a)$ and $\sigma(b)$. The same argument proves that $m$ is also the left least common multiple of $a$ and $b$.

We can now apply Theorem 3.3 to $\sigma(a)$ and $\sigma(b)$, to deduce that there exists $z \in V$ such that $x=b z$ and $\epsilon y=\epsilon a z$, hence $y=a z$.

As in [2], Corollary 3.5 implies the following maximal isotropicity property important for the theory of Dirac structures [5,3].

Corollary 3.6. Let $R$ be as in Theorem 3.3, and let $V$ be a left $R$-module and let $(\cdot, \cdot): V \times V \rightarrow A$ be a non-degenerate symmetric bi-additive pairing on $V$ with values in an abelian group $A$. Let $*$ be an anti-involution of $R$ such that ( $a x, y$ ) $=\left(x, a^{*} y\right.$ ) for all $a \in R$ and $x, y \in V$. Extend the pairing $(\cdot, \cdot)$ to a pairing $\langle\cdot \mid \cdot\rangle$ on $V \oplus V$ with values in $A$, given by

$$
\left\langle x_{1} \oplus x_{2} \mid y_{1} \oplus y_{2}\right\rangle=\left(x_{1}, y_{2}\right)+\left(x_{2}, y_{1}\right)
$$

for every $x_{1}, x_{2}, y_{1}, y_{2} \in V$. Given two elements $a, b \in R$, we consider the following additive subgroup of $V \oplus V$ :

$$
\begin{equation*}
\mathcal{L}_{a, b}=\{b x \oplus a x \mid x \in V\} \subset V \oplus V \tag{3.6}
\end{equation*}
$$

(a) The subgroup $\mathcal{L}_{a, b} \subset V \oplus V$ is isotropic with respect to the pairing $\langle\cdot \mid \cdot\rangle$ if and only if $a^{*} b+b^{*} a$ acts as 0 on $V$.
(b) If $b$ is regular, $a$ and $b$ are right coprime, and $a^{*} b+b^{*} a=0$, then the subgroup $\mathcal{L}_{a, b} \subset V \oplus V$ is maximal isotropic.

Proof. Part (a) is straightforward and part (b) follows immediately from Corollary 3.5 with $\sigma(a)=a^{*}$ and $\epsilon=-1$.
Corollary 3.7. Let $R$ be as in Theorem 3.3, and let $V$ be a left $R$-module. Let $a, b \in R$, with $b$ regular, be left coprime. Let $m=a b_{1}=b a_{1}$ be their right least common multiple. Then $\operatorname{Ker} b=a_{1}\left(\operatorname{Ker} b_{1}\right)$.

Proof. If $k_{1} \in \operatorname{Ker} b_{1}$, then $b\left(a_{1} k_{1}\right)=a b_{1} k_{1}=0$. Therefore, $a_{1}\left(\operatorname{Ker} b_{1}\right) \subset \operatorname{Ker} b$. We need to prove the opposite inclusion. If $k \in \operatorname{Ker} b$, we have $a 0=0=b k$. Hence, by Theorem 3.3, there exists $z \in V$ such that $0=b_{1} z$ and $k=a_{1} z$. Namely, $k \in a_{1}\left(\operatorname{Ker} b_{1}\right)$.

Remark 3.8. In the ring $\mathcal{R}=\operatorname{Mat}_{\ell \times \ell} \mathcal{K}[\partial]$ of $\ell \times \ell$ matrix differential operators over a differential field $\mathcal{K}$, the above Corollary 3.7 implies that if $b^{-1} a=a_{1} b_{1}^{-1}$ is a rational matrix pseudodifferential operator in its minimal left and right fractional decompositions, then $\operatorname{deg}(b)=\operatorname{deg}\left(b_{1}\right)$ (where $\operatorname{deg}(b)$ is the degree of the Dieudonné determinant of $b$ ). Indeed, the fractional decomposition $b^{-1} a$ being minimal means that $a$ and $b$ are left coprime. Hence, by Corollary 3.7 we have that $\operatorname{dim}(\operatorname{Ker} b)=\operatorname{dim}\left(a_{1} \operatorname{Ker} b_{1}\right)$ in any differential field extension of $\mathcal{K}$. Moreover, the fractional decomposition $a_{1} b_{1}^{-1}$ being minimal means that $\operatorname{Ker} a_{1} \cap \operatorname{Ker} b_{1}=0$ in any differential field extension of $\mathcal{K}$. The claim follows by the fact that deg $b$ is equal to the dimension of $\operatorname{Ker} b$ in the linear closure of $\mathcal{K}$ [2].

## Acknowledgements

We wish to thank Toby Stafford and Lance Small for very useful correspondence. In particular, Toby Stafford provided us a proof of Theorem 2.2.

## References

[1] S. Carpentier, A. De Sole, V.G. Kac, Some algebraic properties of matrix differential operators and their Dieudonné determinant, J. Math. Phys. 53 (2012) 063501.
[2] S. Carpentier, A. De Sole, V.G. Kac, Rational matrix pseudodifferential operators, preprint, arXiv:1206.4165, 2012.
[3] A. De Sole, V.G. Kac, Non-local Poisson structures and applications to the theory of integrable systems I, preprint, arXiv:1210.1688, 2012.
[4] A. De Sole, V.G. Kac, Non-local Poisson structures and applications to the theory of integrable systems II, preprint, arXiv:1211.2391, 2012.
[5] I.Ya. Dorfman, Dirac Structures and Integrability of Nonlinear Evolution Equations, Nonlinear Sci. Theory Appl., Wiley \& Sons, New York, 1993.
[6] J.C. McConnell, J.C. Robson, Non-Commutative Noetherian Rings, Grad. Stud. Math., vol. 30, American Mathematical Society, Providence, RI, 2001.
[7] L.W. Small, J.T. Stafford, Regularity of zero divisors, Proc. Lond. Math. Soc. (3) 44 (3) (1982) 405-419.
[8] J.T. Stafford, private communication, 2012.


[^0]:    E-mail addresses: sylvain.carpentier@ens.fr (S. Carpentier), desole@mat.uniroma1.it (A. De Sole), kac@math.mit.edu (V.G. Kac).

