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Hardy–Littlewood’s inequalities, well known in the case of a probability measure, are
extended to the case of a monotone (but not necessarily additive) set function, called
a capacity. The upper inequality is established in the case of a capacity assumed
to be continuous and submodular, the lower — under assumptions of continuity and
supermodularity.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Sous des hypothèses appropriées, nous généralisons les inégalités de Hardy–Littlewood,
bien connues dans le cas où l’espace mesurable sous-jacent est muni d’une probabilité,
au cas d’une fonction d’ensembles monotone, appelée capacité. Le résultat fait usage de la
théorie de l’intégration au sens de Choquet.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Some definitions and basic properties

The definitions and results recalled in this section can be found in the book by D. Denneberg [1], and/or in that by
H. Föllmer and A. Schied (cf. [2, Section 4.7]).

Let (Ω,F) be a measurable space.

Definition 1.1. A set function μ : F → [0,1] is called a capacity if it satisfies μ(∅) = 0 (groundedness), μ(Ω) = 1 (normali-
zation) and the following monotonicity property: A, B ∈F , A ⊂ B ⇒ μ(A)�μ(B).

A capacity μ is called submodular (or concave, or 2-alternating) if

μ(A ∪ B) + μ(A ∩ B) �μ(A) + μ(B), for all A, B ∈ F .

A capacity μ is called supermodular (or convex) if it satisfies the previous property where the inequality is reversed.
A capacity μ is called continuous from below if

(An) ⊂ F such that An ⊂ An+1, ∀n ∈N ⇒ lim
n→∞μ(An) = μ

( ∞⋃
n=1

An

)
.
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Definition 1.2. Two real-valued measurable functions X and Y on (Ω,F) are called comonotonic if

(
X(ω) − X

(
ω′))(Y (ω) − Y

(
ω′))� 0, ∀(

ω,ω′) ∈ Ω × Ω.

For a non-negative measurable function X on (Ω,F), the Choquet integral of X with respect to a capacity μ is defined
as follows:

Eμ(X) :=
+∞∫
0

μ(X > x)dx.

Let X and Y be two non-negative measurable functions on (Ω,F). The Choquet integral with respect to a capacity μ has
the following properties:

– (positive homogeneity) Eμ(λX) = λEμ(X),∀λ ∈R+
– (monotonicity) X � Y ⇒ Eμ(X)� Eμ(Y )

– (comonotonic additivity) If X and Y are comonotonic, then Eμ(X + Y ) = Eμ(X) +Eμ(Y ).

Moreover, if the capacity μ is assumed to be submodular, then the following subadditivity property holds:

– (subadditivity) Eμ(X + Y ) � Eμ(X) +Eμ(Y ).

The reader is referred to [1] for the following result.

Theorem 1.3 (Monotone convergence). Let μ be a capacity on (Ω,F) which is continuous from below. For a non-decreasing sequence
(Xn) of non-negative measurable functions, we have:

lim
n→∞Eμ(Xn) = Eμ( lim

n→∞ Xn).

We recall the notions of (non-decreasing) distribution function and of a quantile function with respect to a capacity μ
(cf. [2]).

Definition 1.4. Let X be a measurable function on (Ω,F). We define the distribution function G X of X with respect to μ
by G X (x) := 1 − μ(X > x), for all x ∈ R̄.

Any generalized inverse function rX : (0,1) → R̄ of the non-decreasing function G X is called a quantile function of X with
respect to μ.

The following properties of quantile functions with respect to a capacity are well known (cf. [1]):

(Q1) If λ� 0, then rλX (t) = λrX (t), for almost every t ∈ (0,1).

(Q2) If X, Y is a pair of (real-valued) comonotonic functions, then rX+Y (t) = rX (t) + rY (t), for almost every t.

2. Hardy–Littlewood’s inequalities in the case of a capacity

We state the main result of the present note. For the corresponding result in the particular case where μ is a probability
measure, the reader is referred to Theorem A.24 in [2] and the references therein.

Theorem 2.1 (Hardy–Littlewood’s inequalities). Let μ be a capacity on (Ω,F). Let X and Y be two non-negative measurable functions
with quantile functions (with respect to the capacity μ) denoted by rX and rY .

(i) If μ is submodular and continuous from below, then Eμ(XY ) �
∫ 1

0 rX (t)rY (t)dt.

(ii) If μ is supermodular and continuous from below, then Eμ(XY ) �
∫ 1

0 rX (1 − t)rY (t)dt.

The proof is based on the following lemma.

Lemma 2.2. Let μ be a capacity on (Ω,F) which is continuous from below. Let (Xn) be a non-decreasing sequence of non-negative
measurable functions and let X denote the limit function.

(i) The sequence of distribution functions (with respect to μ) of Xn is non-increasing and converges to the distribution function (with
respect to μ) of X , i.e. G Xn (x) ↓ G X (x), for all x ∈ R̄+.
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(ii) The following convergence holds as well: rXn (t) ↑ rX (t) for almost every t, where rXn and rX stand for (versions of ) the quantile
functions (with respect to μ) of Xn and X, respectively.

Proof. The proof of the first statement is contained in the proof of Theorem 8.1 in [1].
To prove the second statement, we will use the lower quantile function rl

Xn
of Xn defined by:

rl
Xn

(t) := sup
{

x ∈R: G Xn (x) < t
}
, for t ∈ (0,1).

As the sequence (Xn) is non-negative, non-decreasing, the sequence (rl
Xn

) is non-negative, non-decreasing; we denote by r

the limit function of the latter, i.e. r(t) := limn rl
Xn

(t) = supn rl
Xn

(t),∀t ∈ (0,1). We will show that for all t ∈ (0,1), r(t) = rl
X (t),

where rl
X (t) := sup{x ∈ R : G X (x) < t} is the lower quantile function of X (with respect to μ). The conclusion of the lemma

will follow as rl
X = rX almost everywhere and rl

Xn
= rXn almost everywhere.

Now, G Xn � G X for all n, which implies that rl
Xn

(t) � rl
X (t),∀t ∈ (0,1),∀n. By passing to the limit, we obtain r(t) �

rl
X (t),∀t ∈ (0,1).

We turn to the proof of the converse inequality, namely r(t) � rl
X (t),∀t ∈ (0,1). Fix t ∈ (0,1) and let x ∈ R be such that

G X (x) < t . By the first part of the lemma, we know that G Xn (x) ↓ G X (x). Hence, there exists n0 = n0(t, x) such that for all
n � n0, G Xn (x) < t . Therefore, for all n � n0, x ∈ {y ∈ R: G Xn (y) < t} which implies that rl

Xn
(t) := sup{y ∈ R: G Xn (y) < t} �

x,∀n � n0. By passing to the limit, we obtain that r(t) � x, which gives the desired inequality and concludes the proof. �
Proof of Theorem 2.1. We will prove the first part of the theorem which concerns the upper bound. The lower bound can
be proved by means of similar arguments.

Step 1. The inequality is satisfied by X and Y of the form X = IA , Y = IB , where A, B ∈F (even without the assumption
of continuity from below and submodularity of μ). Indeed,

Eμ(IAIB) = μ(A ∩ B) �μ(A) ∧ μ(B) =
1∫

0

rIA (t)rIB (t)dt, (1)

where we have used that rIA = I(1−μ(A),1] a.e. in order to obtain the last equality in (1).
Step 2. We prove the desired inequality for non-negative step functions. Let X and Y be two non-negative step functions.

The function X has the following representation X = ∑n
i=1 xiIAi , with xi � 0 and Ai ∈F . Without loss of generality, we can

suppose that the numbers xi are ranged in a descending order (i.e. x1 � x2 � · · · � xn � 0) and that the sets Ai are disjoint.
Thus, the function X can be rewritten in the following manner: X = ∑n

i=1 x̃iI Ãi
, where x̃i := xi − xi+1 � 0, xn+1 := 0 and

Ãi := ⋃i
k=1 Ak . We note that the functions x̃iI Ãi

and x̃ jI Ã j
are comonotonic. In the same manner, the function Y has the

following representation: Y = ∑m
j=1 ỹ jIB̃ j

, where ỹ j � 0 and B̃ j ⊂ B̃ j+1.

Thanks to the subadditivity of the Choquet integral with respect to a submodular capacity and to the positive homo-
geneity of the Choquet integral, we have:

Eμ(XY ) �
n∑

i=1

m∑
j=1

x̃i ỹ jμ( Ãi ∩ B̃ j). (2)

On the other hand, we see that rX = ∑n
i=1 rXi a.e. where we have set Xi := x̃iI Ãi

and where rXi designates a quantile

function of Xi . Indeed, as mentioned above, the functions in the sum
∑n

i=1 x̃iI Ãi
are pairwise comonotonic; therefore, the

functions
∑k−1

i=1 x̃iI Ãi
and x̃kI Ãk

are comonotonic; property (Q2) and a reasoning by induction allow us to conclude. By the

same arguments, rY = ∑m
j=1 rY j a.e. where Y j := ỹ jIB̃ j

and rY j designates a quantile function of Y j . So,

1∫
0

rX (t)rY (t)dt =
n∑

i=1

m∑
j=1

x̃i ỹ j

1∫
0

rI Ãi
(t)rIB̃ j

(t)dt, (3)

where the non-negativity of x̃i and ỹ j and property (Q1) have been used.

From the first step of the proof about indicator functions, we know that μ( Ãi ∩ B̃ j) �
∫ 1

0 rI Ãi
(t)rIB̃ j

(t)dt (cf. Eq. (1)). The

second step is proved, by combining this observation with Eqs. (2) and (3).
Step 3. To prove the inequality in the general case, let X and Y be two measurable non-negative functions. Let (Xn)

be a sequence of non-negative step functions such that Xn ↑ X , and let (Yn) be a sequence of non-negative step functions
such that Yn ↑ Y . From the second step of the proof, we know that Eμ(XnYn) �

∫ 1
0 rXn (t)rYn (t) dt , for all n. By apply-

ing the monotone convergence theorem (Theorem 1.3) to the non-negative, non-decreasing sequence (XnYn), we obtain
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limn→∞ Eμ(XnYn) = Eμ(XY ). On the other hand, by using Lemma 2.2, we obtain rXn (t) ↑ rX (t) for almost every t and
rYn (t) ↑ rY (t) for almost every t; these considerations, along with the non-negativity of rXn (·) and rYn (·) for all n, lead to
rXn (t)rYn (t) ↑ rX (t)rY (t) for almost every t . The monotone convergence theorem for Lebesgue integrals, applied to the se-

quence (rXn (·)rYn (·)), gives limn→∞
∫ 1

0 rXn (t)rYn (t)dt = ∫ 1
0 rX (t)rY (t)dt , which concludes the proof. �

We note that, as in the particular case where μ is a probability measure, the upper bound in Theorem 2.1 is attained by
a pair of non-negative comonotonic measurable functions. We remark, as well, that a result analogous to Theorem 2.1 can
be established in the case where μ(Ω) is finite, but not necessarily normalized to 1.

In the case where the measurable functions can take negative values, Theorem 2.1 does not necessarily hold true, as
can be seen from the following counter-example. For the definition of the (asymmetric) Choquet integral in this case, the
reader is referred to Chapter 5 in [1], and to [2]. Let (Ω,F ,μ) be given, where μ is a non-additive submodular (resp.
supermodular) capacity. Then, there exists A ∈ F such that μ(A) > (resp. <) 1 − μ(Ac). We set X := IA and Y := b, where
b < 0. An explicit computation gives Eμ(XY ) = b(1 − μ(Ac)) and

∫ 1
0 rX (t)rY (t)dt = ∫ 1

0 rX (t)rY (1 − t)dt = bμ(A). Thus,

Eμ(XY ) >
∫ 1

0 rX (t)rY (t)dt (resp. Eμ(XY ) <
∫ 1

0 rX (t)rY (1 − t)dt), which is a violation of the upper (resp. lower) bound in
Theorem 2.1.

For an application of Theorem 2.1 to finance, the reader is referred to [3] (and the subsequent work [4]).
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