Complex Analysis

Squares of positive (p, p)-forms

Carrés de (p, p)-formes positives

Zbigniew Błocki ${ }^{\text {a }}$, Szymon Pliś ${ }^{\text {b,1 }}$
a Instytut Matematyki, Uniwersytet Jagielloński, Łojasiewicza 6, 30-348 Kraków, Poland
${ }^{\text {b }}$ Instytut Matematyki, Politechnika Krakowska, Warszawska 24, 31-155 Kraków, Poland

A R T I C L E I N F O

Article history:

Received 30 November 2012
Accepted after revision 21 January 2013
Available online 7 February 2013
Presented by Jean-Pierre Demailly

Abstract

We show that if α is a positive (2,2)-form, then so is α^{2}. We also prove that this is no longer true for forms of higher degree. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{RÉ S U M É}

Nous montrons que si α est une (2,2)-forme positive alors α^{2} l'est aussi. Nous prouvons également que ceci n'est plus vrai pour les formes de degré supérieur.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Recall that a (p, p)-form α in \mathbb{C}^{n} is called positive (we write $\alpha \geqslant 0$) if for (1,0)-forms $\gamma_{1}, \ldots, \gamma_{n-p}$ one has:

$$
\alpha \wedge i \gamma_{1} \wedge \bar{\gamma}_{1} \wedge \cdots \wedge i \gamma_{n-p} \wedge \bar{\gamma}_{n-p} \geqslant 0
$$

This is a natural geometric condition, positive (p, p)-forms are for example characterized by the following property: for every p-dimensional subspace V and a test function $\varphi \geqslant 0$, one has:

$$
\int_{V} \varphi \alpha \geqslant 0 .
$$

It is well known that positive forms are real (that is $\bar{\alpha}=\alpha$) and if β is a (1,1)-form then

$$
\begin{equation*}
\alpha \geqslant 0, \quad \beta \geqslant 0 \quad \Rightarrow \quad \alpha \wedge \beta \geqslant 0 \tag{1}
\end{equation*}
$$

It was shown by Harvey and Knapp [5] (and independently by Bedford and Taylor [1]) that (1) does not hold for all (p, p) and (q, q)-forms α and β, respectively. We refer to Demailly's book [2], pp. 129-132, for a nice and simple introduction to positive forms.

Dinew [3] gave an explicit example of (2,2)-forms α, β in \mathbb{C}^{4} such that $\alpha \geqslant 0, \beta \geqslant 0$ but $\alpha \wedge \beta<0$. We will recall it in the next section. The aim of this note is to show the following, somewhat surprising result:

Theorem 1. Assume that α is a positive (2, 2)-form. Then α^{2} is also positive.

[^0]It turns out that this phenomenon holds only for $(2,2)$-forms:
Theorem 2. For every $p \geqslant 3$, there exists $a(p, p)$-form α in $\mathbb{C}^{2 p}$ such that $\alpha \geqslant 0$ but $\alpha^{2}<0$.
We do not know if similar results hold for higher powers of positive forms.
The paper is organized as follows: in Section 2 we present Dinew's criterion for positivity of (2,2)-forms in \mathbb{C}^{4}, which reduces the problem to a certain property of 6×6 matrices. Further simplification reduces the problem to 4×4 matrices. We then solve it in Section 3. This is the most technical part of the paper. Higher degree forms are analyzed in Section 4, where a counterpart of Dinew's criterion is showed and Theorem 2 is proved.

2. Dinew's criterion

Without loss of generality we may assume that $n=4$. Let $\omega_{1}, \ldots, \omega_{4}$ be a basis of $\left(\mathbb{C}^{4}\right)^{*}$ such that:

$$
\mathrm{d} V:=i \omega_{1} \wedge \bar{\omega}_{1} \wedge \cdots \wedge i \omega_{4} \wedge \bar{\omega}_{4}=\omega_{1} \wedge \cdots \wedge \omega_{4} \wedge \bar{\omega}_{1} \wedge \cdots \wedge \bar{\omega}_{4}>0
$$

Set

$$
\begin{array}{ll}
\Omega_{1}:=\omega_{1} \wedge \omega_{2}, & \Omega_{2}:=\omega_{1} \wedge \omega_{3},
\end{array} \quad \Omega_{3}:=\omega_{1} \wedge \omega_{4}, ~ 子 \Omega_{5}:=-\omega_{2} \wedge \omega_{4}, \quad \Omega_{6}:=\omega_{3} \wedge \omega_{4} .
$$

Then

$$
\Omega_{j} \wedge \Omega_{k}= \begin{cases}\omega_{1} \wedge \cdots \wedge \omega_{4}, & \text { if } k=7-j \\ 0, & \text { otherwise }\end{cases}
$$

With every (2,2)-form α we can associate a 6×6-matrix $A=\left(a_{j k}\right)$ by

$$
\alpha=\sum_{j, k} a_{j k} \Omega_{j} \wedge \bar{\Omega}_{k}
$$

For

$$
\beta=\sum_{j, k} b_{j k} \Omega_{j} \wedge \bar{\Omega}_{k}
$$

we have:

$$
\begin{equation*}
\alpha \wedge \beta=\sum_{j, k} a_{j k} b_{7-j, 7-k} \mathrm{~d} V \tag{2}
\end{equation*}
$$

The key will be the following criterion from [3]:
Theorem 3. $\alpha \geqslant 0$ if $\bar{z} A z^{T} \geqslant 0$ for all $z \in \mathbb{C}^{6}$ with $z_{1} z_{6}+z_{2} z_{5}+z_{3} z_{4}=0$.
Sketch of proof. For $\gamma_{1}=b_{1} \omega_{1}+\cdots+b_{4} \omega_{4}, \gamma_{2}=c_{1} \omega_{1}+\cdots+c_{4} \omega_{4}$, we have

$$
\begin{aligned}
i \gamma_{1} \wedge \bar{\gamma}_{1} \wedge i \gamma_{2} \wedge \bar{\gamma}_{2} & =\sum_{j, k, l, m=1}^{4} b_{j} \bar{b}_{k} c_{l} \bar{c}_{m} \omega_{j} \wedge \omega_{l} \wedge \bar{\omega}_{k} \wedge \bar{\omega}_{m} \\
& =\sum_{\substack{j<l \\
k<m}}\left(b_{j} c_{l}-b_{l} c_{j}\right) \overline{\left(b_{k} c_{m}-b_{m} c_{k}\right)} \omega_{j} \wedge \omega_{l} \wedge \bar{\omega}_{k} \wedge \bar{\omega}_{m}
\end{aligned}
$$

It is now enough to show that the image of the mapping:

$$
\begin{aligned}
& \mathbb{C}^{8} \\
& \ni\left(b_{1}, \ldots, b_{4}, c_{1}, \ldots, c_{4}\right) \\
& \quad \longmapsto\left(b_{1} c_{2}-b_{2} c_{1}, b_{1} c_{3}-b_{3} c_{1}, b_{1} c_{4}-b_{4} c_{1}, b_{2} c_{3}-b_{3} c_{2},-b_{2} c_{4}+b_{4} c_{2}, b_{3} c_{4}-b_{4} c_{3}\right) \in \mathbb{C}^{6}
\end{aligned}
$$

is precisely $\left\{z \in \mathbb{C}^{6}: z_{1} z_{6}+z_{2} z_{5}+z_{3} z_{4}=0\right\}$. Indeed, it is a well-known fact that the image of the Plücker embedding of the 4-dimensional Grassmannian $G(2,4)$ in $P\left(\Lambda^{2} \mathbb{C}^{4}\right) \simeq \mathbb{P}^{5}$ is the quadric defined by the above equation.

Using Theorem 3 and an idea from [3], we can show:

Proposition 4. The form

$$
\alpha_{a}=\sum_{j=1}^{6} \Omega_{j} \wedge \bar{\Omega}_{j}+a \Omega_{1} \wedge \bar{\Omega}_{6}+\bar{a} \Omega_{6} \wedge \bar{\Omega}_{1}
$$

is positive if and only if $|a| \leqslant 2$.

Proof. We have:

$$
\bar{z} A z^{T}=|z|^{2}+2 \operatorname{Re}\left(a \bar{z}_{1} z_{6}\right) \geqslant 2\left|z_{1} z_{6}\right|+2\left|z_{2} z_{5}+z_{3} z_{4}\right|+2 \operatorname{Re}\left(a \bar{z}_{1} z_{6}\right)
$$

If $z_{1} z_{6}+z_{2} z_{5}+z_{3} z_{4}=0$ and $|a| \leqslant 2$ we clearly get $\bar{z} A z^{T} \geqslant 0$. If we take z_{1}, z_{6} with $\bar{z}_{1} z_{6}=-\bar{a},\left|z_{1}\right|=\left|z_{6}\right|$ and z_{2}, \ldots, z_{5} with $z_{2} z_{5}+z_{3} z_{4}=-z_{1} z_{6}$ then $\bar{z} A z^{T}=2|a|(2-|a|)$.

By (2):

$$
\alpha_{a} \wedge \alpha_{b}=2(3+\operatorname{Re}(a \bar{b})) \mathrm{d} V
$$

Therefore, α_{2}, α_{-2} are positive, but $\alpha_{2} \wedge \alpha_{-2}<0$.
In view of Theorem 3, we see that Theorem 1 is equivalent to the following:
Theorem 5. Let $A=\left(a_{j k}\right) \in \mathbb{C}^{6 \times 6}$ be hermitian and such that $\bar{z} A z^{T} \geqslant 0$ for $z \in \mathbb{C}^{6}$ with $z_{1} z_{6}+z_{2} z_{5}+z_{3} z_{4}=0$. Then

$$
\sum_{j, k=1}^{6} a_{j k} a_{7-j, 7-k} \geqslant 0
$$

We will need the following technical reduction:
Lemma 6. For every $(2,2)$-form α in \mathbb{C}^{4}, we can find a basis $\omega_{1}, \ldots, \omega_{4}$ of $\left(\mathbb{C}^{4}\right)^{*}$ such that:

$$
\begin{equation*}
\alpha \wedge \omega_{1} \wedge \omega_{2} \wedge \bar{\omega}_{1} \wedge \bar{\omega}_{j}=\alpha \wedge \omega_{1} \wedge \omega_{2} \wedge \bar{\omega}_{2} \wedge \bar{\omega}_{j}=0 \tag{3}
\end{equation*}
$$

for $j=3,4$.
Proof. We may assume that $\alpha \neq 0$, then we can find $\omega_{1}, \omega_{2} \in\left(\mathbb{C}^{4}\right)^{*}$ such that

$$
\begin{equation*}
\alpha \wedge \omega_{1} \wedge \omega_{2} \wedge \bar{\omega}_{1} \wedge \bar{\omega}_{2}=\alpha \wedge i \omega_{1} \wedge \bar{\omega}_{1} \wedge i \omega_{2} \wedge \bar{\omega}_{2} \neq 0 \tag{4}
\end{equation*}
$$

By V_{1} denote the subspace spanned by ω_{1}, ω_{2} and by V_{2} the subspace of all $\omega \in\left(\mathbb{C}^{4}\right)^{*}$ satisfying (3) with ω_{j} replaced by ω. Then $\operatorname{dim} V_{1}=2$, $\operatorname{dim} V_{2} \geqslant 2$, and by (4) we infer $V_{1} \cap V_{2}=\{0\}$, hence $\left(\mathbb{C}^{4}\right)^{*}=V_{1} \oplus V_{2}$.

3. Proof of Theorem 5

By Lemma 6 we may assume that the matrix from Theorem 5 satisfies

$$
a_{26}=a_{36}=a_{46}=a_{56}=0
$$

and

$$
a_{62}=a_{63}=a_{64}=a_{65}=0
$$

Then

$$
\sum_{j, k=1}^{6} a_{j k} a_{7-j, 7-k}=\sum_{j, k=2}^{5} a_{j k} a_{7-j, 7-k}+2\left(a_{11} a_{66}+\left|a_{16}\right|^{2}\right)
$$

Therefore Theorem 5 is in fact equivalent to the following result:
Theorem 7. Let $A=\left(a_{j k}\right) \in \mathbb{C}^{4 \times 4}$ be hermitian and such that $\bar{z} A z^{T} \geqslant 0$ for $z \in \mathbb{C}^{4}$ with $z_{1} z_{4}+z_{2} z_{3}=0$. Then

$$
\begin{equation*}
\sum_{j, k=1}^{4} a_{j k} a_{5-j, 5-k} \geqslant 0 \tag{5}
\end{equation*}
$$

Proof. Write

$$
A=\left(\begin{array}{cccc}
\lambda_{1} & a & b & \alpha \\
\bar{a} & \lambda_{2} & \beta & -c \\
\bar{b} & \bar{\beta} & \lambda_{3} & -d \\
\bar{\alpha} & -\bar{c} & -\bar{d} & \lambda_{4}
\end{array}\right) .
$$

It satisfies the assumption of the theorem if and only if for every $z \in \mathbb{C}^{4}$ of the form $z=(1, \zeta, w,-\zeta w)$ one has $\bar{z} A z^{T} \geqslant 0$. We can then compute

$$
\begin{aligned}
\bar{z} A z^{T}= & \lambda_{1}+2 \operatorname{Re}(a \zeta)+\lambda_{2}|\zeta|^{2} \\
& +2 \operatorname{Re}\left[\left(b-\alpha \zeta+\beta \bar{\zeta}+c|\zeta|^{2}\right) w\right] \\
& +\left(\lambda_{3}+2 \operatorname{Re}(d \zeta)+\lambda_{4}|\zeta|^{2}\right)|w|^{2}
\end{aligned}
$$

Therefore A satisfies the assumption if $\lambda_{j} \geqslant 0$,

$$
\begin{equation*}
|a| \leqslant \sqrt{\lambda_{1} \lambda_{2}}, \quad|b| \leqslant \sqrt{\lambda_{1} \lambda_{3}}, \quad|c| \leqslant \sqrt{\lambda_{2} \lambda_{4}}, \quad|d| \leqslant \sqrt{\lambda_{3} \lambda_{4}} \tag{6}
\end{equation*}
$$

and for every $\zeta \in \mathbb{C}$

$$
\begin{equation*}
\left.\left.|b-\alpha \zeta+\beta \bar{\zeta}+c| \zeta\right|^{2}\right|^{2} \leqslant\left(\lambda_{1}+2 \operatorname{Re}(a \zeta)+\lambda_{2}|\zeta|^{2}\right)\left(\lambda_{3}+2 \operatorname{Re}(d \zeta)+\lambda_{4}|\zeta|^{2}\right) \tag{7}
\end{equation*}
$$

In our case (5) is equivalent to

$$
4 \operatorname{Re}(a \bar{d}+b \bar{c}) \leqslant 2\left(\lambda_{1} \lambda_{4}+\lambda_{2} \lambda_{3}\right)+2\left(|\alpha|^{2}+|\beta|^{2}\right)
$$

We will in fact prove something more:

$$
\begin{equation*}
4 \operatorname{Re}(a \bar{d}+b \bar{c}) \leqslant\left(\sqrt{\lambda_{1} \lambda_{4}}+\sqrt{\lambda_{2} \lambda_{3}}\right)^{2}+(|\alpha|+|\beta|)^{2} \tag{8}
\end{equation*}
$$

Without loss of generality, we may assume that:

$$
\operatorname{Re}(a \bar{d})>0, \quad \operatorname{Re}(b \bar{c})>0
$$

for if for example $\operatorname{Re}(a \bar{d}) \leqslant 0$ then by (6)

$$
4 \operatorname{Re}(a \bar{d}+b \bar{c}) \leqslant 4 \operatorname{Re}(b \bar{c}) \leqslant 4 \sqrt{\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}} \leqslant\left(\sqrt{\lambda_{1} \lambda_{4}}+\sqrt{\lambda_{2} \lambda_{3}}\right)^{2}
$$

Set $u:=\operatorname{Re}(a \bar{d})$ and $\zeta:=-r \bar{d} /|d|$, where $r>0$ will be determined later. Then we can write the right-hand side of (7) as follows:

$$
\begin{aligned}
& \left(\lambda_{1}-\frac{2 u r}{|d|}+\lambda_{2} r^{2}\right)\left(\lambda_{3}-2 r|d|+\lambda_{4} r^{2}\right) \\
& \quad=\left(\lambda_{1}+\lambda_{2} r^{2}\right)\left(\lambda_{3}+\lambda_{4} r^{2}\right)+4 u r^{2}-2 r\left[\lambda_{1}|d|+\lambda_{3} \frac{u}{|d|}+r^{2}\left(\lambda_{2}|d|+\lambda_{4} \frac{u}{|d|}\right)\right] \\
& \leqslant\left(\lambda_{1}+\lambda_{2} r^{2}\right)\left(\lambda_{3}+\lambda_{4} r^{2}\right)+4 u r^{2}-4 r^{2}\left(\sqrt{\lambda_{1} \lambda_{4}}+\sqrt{\lambda_{2} \lambda_{3}}\right) \sqrt{u} \\
& \quad=\left(\sqrt{\lambda_{1} \lambda_{4}}+\sqrt{\lambda_{2} \lambda_{3}}-2 \sqrt{u}\right)^{2} r^{2}+\left(\sqrt{\lambda_{1} \lambda_{3}}-\sqrt{\lambda_{2} \lambda_{4}} r^{2}\right)^{2}
\end{aligned}
$$

For $r=\left(\frac{\lambda_{1} \lambda_{3}}{\lambda_{2} \lambda_{4}}\right)^{1 / 4}$ from (7) we thus obtain:

$$
\left|\frac{b}{r}+\frac{\bar{d}}{|d|} \alpha-\frac{d}{|d|} \beta+c r\right| \leqslant \sqrt{\lambda_{1} \lambda_{4}}+\sqrt{\lambda_{2} \lambda_{3}}-2 \sqrt{u}
$$

We also have:

$$
\left|\frac{b}{r}+\frac{\bar{d}}{|d|}(\alpha-\bar{\beta})+c r\right| \geqslant\left|\frac{b}{r}+c r\right|-|\alpha|-|\beta| \geqslant 2 \sqrt{\operatorname{Re}(b \bar{c})}-|\alpha|-|\beta|
$$

and therefore:

$$
2 \sqrt{\operatorname{Re}(a \bar{d})}+2 \sqrt{\operatorname{Re}(b \bar{c})} \leqslant \sqrt{\lambda_{1} \lambda_{4}}+\sqrt{\lambda_{2} \lambda_{3}}+|\alpha|+|\beta| .
$$

To get (8), we can now use the following fact: if $0 \leqslant a_{1} \leqslant x, 0 \leqslant a_{2} \leqslant x$ and $a_{1}+a_{2} \leqslant x+y$ then $a_{1}^{2}+a_{2}^{2} \leqslant x^{2}+y^{2}$. This can be easily verified: if $a_{1}+a_{2} \leqslant x$ then $a_{1}^{2}+a_{2}^{2} \leqslant x^{2}$ and if $a_{1}+a_{2} \geqslant x$ then

$$
x^{2}+y^{2} \geqslant x^{2}+\left(a_{1}+a_{2}-x\right)^{2}=a_{1}^{2}+a_{2}^{2}+2 x\left(x-a_{1}\right)\left(x-a_{2}\right)
$$

4. $(\boldsymbol{p}, \boldsymbol{p})$-Forms in $\mathbb{C}^{2 p}$

In $\mathbb{C}^{2 p}$ we choose the positive volume form:

$$
\mathrm{d} V:=i \mathrm{~d} z_{1} \wedge \mathrm{~d} \bar{z}_{1} \wedge \cdots \wedge i \mathrm{~d} z_{2 p} \wedge \mathrm{~d} \bar{z}_{2 p}=\mathrm{d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{2 p} \wedge \mathrm{~d} \bar{z}_{1} \wedge \cdots \wedge \mathrm{~d} \bar{z}_{2 p}
$$

By \mathcal{I} we will denote the set of subscripts $J=\left(j_{1}, \ldots, j_{p}\right)$ such that $1 \leqslant j_{1}<\cdots<j_{p} \leqslant 2 p$. For every $J \in \mathcal{I}$ there exists unique $J^{\prime} \in \mathcal{I}$ such that $J \cup J^{\prime}=\{1, \ldots, 2 p\}$. We also denote $\mathrm{d} z_{J}=\mathrm{d} z_{j_{1}} \wedge \cdots \wedge \mathrm{~d} z_{j_{p}}$ and $\varepsilon_{J}= \pm 1$ is defined in such a way that:

$$
\mathrm{d} z_{J} \wedge \mathrm{~d} z_{J^{\prime}}=\varepsilon_{J} \mathrm{~d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{2 p}
$$

Note that:

$$
\begin{equation*}
\varepsilon_{J} \varepsilon_{J^{\prime}}=(-1)^{p} \tag{9}
\end{equation*}
$$

With every (p, p)-form α in $\mathbb{C}^{2 p}$ we can associate an $N \times N$-matrix $\left(a_{J K}\right)$, where

$$
N=\sharp \mathcal{I}=\frac{(2 p)!}{(p!)^{2}},
$$

by

$$
\begin{equation*}
\alpha=\sum_{J, K} a_{J K} i \mathrm{~d} z_{j_{1}} \wedge \mathrm{~d} \bar{z}_{k_{1}} \wedge \cdots \wedge i \mathrm{~d} z_{j_{p}} \wedge \mathrm{~d} \bar{z}_{k_{p}}=i^{p^{2}} \sum_{J, K} a_{J K} \mathrm{~d} z_{J} \wedge \mathrm{~d} \bar{z}_{K} \tag{10}
\end{equation*}
$$

(note that $(-1)^{p(p-1) / 2} i^{p}=i^{p^{2}}$). Then

$$
\begin{equation*}
\alpha^{2}=\sum_{J, K} \varepsilon_{J} \varepsilon_{K} a_{J K} a_{J^{\prime} K^{\prime}} \mathrm{d} V \tag{11}
\end{equation*}
$$

and for $\gamma_{1}, \ldots, \gamma_{p} \in\left(\mathbb{C}^{2 p}\right)^{*}$

$$
\alpha \wedge i \gamma_{1} \wedge \bar{\gamma}_{1} \wedge \cdots \wedge i \gamma_{p} \wedge \bar{\gamma}_{p}=\sum_{J, K} a_{J K} \gamma_{1} \wedge \cdots \wedge \gamma_{p} \wedge \mathrm{~d} z_{J} \wedge \overline{\left(\gamma_{1} \wedge \cdots \wedge \gamma_{p} \wedge \mathrm{~d} z_{K}\right)}
$$

Therefore $\left(a_{J K}\right)$ has to be positive semi-definite on the image of the Plücker embedding

$$
\begin{equation*}
\left(\left(\mathbb{C}^{2 p}\right)^{*}\right)^{p} \ni\left(\gamma_{1}, \ldots, \gamma_{p}\right) \longmapsto\left(\frac{\gamma_{1} \wedge \cdots \wedge \gamma_{p} \wedge \mathrm{~d} z_{J}}{\mathrm{~d} z_{1} \wedge \cdots \wedge \mathrm{~d} z_{2 p}}\right)_{J \in \mathcal{I}} \in \mathbb{C}^{N} \tag{12}
\end{equation*}
$$

which is well known to be a variety in \mathbb{C}^{N} (see, e.g., [4], p. 64).
We are now ready to prove Theorem 2:
Proof of Theorem 2. First note that it is enough to show it for $p=3$. For if α is a (3,3)-form in \mathbb{C}^{6} such that $\alpha \geqslant 0$ and $\alpha^{2}<0$ then for $p>3$ we set:

$$
\beta:=i \mathrm{~d} z_{7} \wedge \mathrm{~d} \bar{z}_{7}+\cdots+i \mathrm{~d} z_{2 p} \wedge \mathrm{~d} \bar{z}_{2 p}
$$

We now have $\alpha \wedge \beta^{p-3} \geqslant 0$ but $\left(\alpha \wedge \beta^{p-3}\right)^{2}=\alpha^{2} \wedge \beta^{2 p-6}<0$.
Set $p=3$, so that $N=20$, and order $\mathcal{I}=\left\{J_{1}, \ldots, J_{20}\right\}$ lexicographically. Then the image of the Plücker embedding (12) is in particular contained in the quadric:

$$
\begin{equation*}
z_{1} z_{20}-z_{10} z_{11}+z_{5} z_{16}-z_{2} z_{19}=0 \tag{13}
\end{equation*}
$$

For positive a, λ, μ to be determined later define:

$$
\alpha:=i\left[\lambda\left(\mathrm{~d} z_{J_{1}} \wedge \mathrm{~d} \bar{z}_{J_{1}}+\mathrm{d} z_{J_{20}} \wedge \mathrm{~d} \bar{z}_{J_{20}}\right)+\mu \sum_{\substack{k \in\{2,5,10 \\ 11,16,19\}}} \mathrm{d} z_{J_{k}} \wedge \mathrm{~d} \bar{z}_{J_{k}}+a\left(\mathrm{~d} z_{J_{1}} \wedge \mathrm{~d} \bar{z}_{J_{20}}+\mathrm{d} z_{J_{20}} \wedge \mathrm{~d} \bar{z}_{J_{1}}\right)\right]
$$

Then, similarly as in the proof of Proposition 4,

$$
\begin{aligned}
\bar{z} A z^{T} & =\lambda\left(\left|z_{1}\right|^{2}+\left|z_{20}\right|^{2}\right)+\mu\left(\left|z_{2}\right|^{2}+\left|z_{5}\right|^{2}+\left|z_{10}\right|^{2}+\left|z_{11}\right|^{2}+\left|z_{16}\right|^{2}+\left|z_{19}\right|^{2}\right)+2 a \operatorname{Re}\left(\bar{z}_{1} z_{20}\right) \\
& \geqslant 2(\lambda-a)\left|z_{1} z_{20}\right|+2 \mu\left|-z_{10} z_{11}+z_{5} z_{16}-z_{2} z_{19}\right| \\
& =2(\lambda+\mu-a)\left|z_{1} z_{20}\right|
\end{aligned}
$$

if z satisfies (13). Therefore $\alpha \geqslant 0$ if $a \leqslant \lambda+\mu$.

On the other hand, by (11) and (9):

$$
\alpha^{2}=2\left(\lambda^{2}+3 \mu^{2}-a^{2}\right) \mathrm{d} V
$$

We see that if we take $a=\lambda+\mu$ and $\lambda>\mu>0$, then $\alpha \geqslant 0$ but $\alpha^{2}<0$.

References

[1] E. Bedford, B.A. Taylor, Simple and positive vectors in the exterior algebra of \mathbb{C}^{n}, preprint, 1974.
[2] J.-P. Demailly, Complex Analytic and Differential Geometry, monograph, 1997, available at http://www-fourier.ujf-grenoble.fr/~demailly.
[3] S. Dinew, On positive $\mathbb{C}_{(2,2)}\left(\mathbb{C}^{4}\right)$ forms, preprint, 2006.
[4] J. Harris, Algebraic Geometry. A First Course, Grad. Texts in Math., vol. 133, Springer, 1995.
[5] R. Harvey, A.W. Knapp, Positive (p, p) forms, Wirtinger's inequality, and currents, in: R.O. Kujala, A.L. Vitter III (Eds.), Value Distribution Theory, Part A, Dekker, 1974, pp. 43-62.

[^0]: E-mail addresses: Zbigniew.Blocki@im.uj.edu.pl, umblocki@cyf-kr.edu.pl (Z. Błocki), splis@pk.edu.pl (S. Pliś).
 1 The second named author was partially supported by the NCN grant No. 2011/01/D/ST1/04192.

 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.01.009

