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We prove that the Assouad dimensions of a class of Moran sets coincide with their upper
box dimensions and packing dimensions.
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r é s u m é

Nous montrons que, pour les ensembles d’une classe de Moran, la dimension d’Assouad
coïncide avec la dimension de boîte supérieure et avec la dimension d’empilement.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let us begin with the definition of the Assouad dimension which is introduced by Assouad [1]. A metric space X is
doubling if there exists an N > 0 such that any ball can be covered by N balls of half the radius. Repeated applying this
property, we see that there exist some b, c > 0 and α > 0 such that for any r, R satisfying 0 < r < R < b, any ball B(x, R)

can be covered by c( R
r )α balls of radius r. The Assouad dimension of a metric space X , denoted by dimA X , is the infimal

value of α for which there exists a constant c such that the above property holds. More precisely, for r, R > 0, let Nr,R(X)

denote the smallest number of balls with radii equal to r needed to cover any ball with radius equal to R , then

dimA X = inf

{
α � 0

∣∣∣ there are constants b, c > 0 satisfying:

for any 0 < r < R < b, the inequality Nr,R(X) � c

(
R

r

)α

holds

}
. (1.1)

The Assouad dimension plays an important role in the study of quasi-conformal mappings in R
d , see [3,6]. However, it has

received little attention on fractal geometry. It is well known that

dimH X � dimP X � dimB X � dimA X, (1.2)

where dimH X,dimP X,dimB X denote the Hausdorff, packing and upper box dimensions of X , respectively. We refer the
reader to [2,9] for the definitions and basic properties of these fractal dimensions. It is worth to point out that the last
inequality in (1.2) may be strict. For example, let X = {0,1, 1

2 , 1
3 , . . .}, then dimB X = dimB X = 1

2 , but dimA X = 1, see
Example 3.5 in [2] and Exercise 10.16 in [3]. It is well known that if X is Ahlfors regular, then the inequalities in (1.2) are,
in fact, equalities, see, for example [10]. Recall that a metric space X is called Ahlfors regular provided it admits a Borel
regular measure μ such that

C−1rs �μ
(

B(x, r)
)
� Crs
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for some C � 1, for some exponent s > 0, and for all x ∈ X, r > 0. It is well known that self-similar sets with the open-set
condition are Ahlfors regular [5]. By arguments similar to those in [5], one can prove that the graph-directed Moran frac-
tals satisfying the open-set condition are also Ahlfors regular and therefore their Assouad dimensions equal the Hausdorff
dimensions. Very recently, Olsen [8] gave a simple and direct proof that the Assouad dimension of a graph-directed Moran
fractal satisfying the open-set condition coincides with its Hausdorff and box dimensions. However, in general it is difficult
to obtain the Assouad dimensions of sets which are not Ahlfors regular. Mackay [7] calculated the Assouad dimension of the
self-affine carpets of Bedford and McMullen and his main result solved the problem posed by Olsen [8]. In this short note,
we will show that the Assouad dimensions of the Moran sets introduced by Wen [11] coincide with their packing and upper
box dimensions. We would like to stress that the Moran sets discussed in this paper are different from the graph-directed
Moran fractals discussed by Olsen [8]. In fact, in general the Moran sets we discussed are not Ahlfors regular.

2. Statement of results

Firstly, let us recall the definition of Moran sets introduced by Wen [11]. Let {nk}k�1 ⊂ N be a sequence of positive integer
(we assume nk � 2). For m,k ∈ N, set Dm,k = {σmσm+1 · · ·σk: 1 � σ j � n j,m � j � k} and Dk = D1,k . Define D = ⋃∞

k=1 Dk .
Any element σ ∈ D is called a word, by convention denoted by D0 = ∅. If σ = σ1σ2 · · ·σk ∈ Dk and τ = τ1τ2 · · ·τm ∈ Dk+1,m ,
we define σ ∗ τ = σ1 · · ·σkτ1 · · ·τm . For σ = σ1σ2 · · ·σk ∈ Dk , we will write |σ | = k for the length of σ .

Suppose that J ⊂R
d is a compact set with int J = J (here and below we write int B and B for the interior and the closure

of set B respectively). Let {Φk}k�1 be a sequence of positive real vectors with Φk = (ck,1, ck,2, . . . , ck,nk ),
∑nk

j=1 ck, j � 1,k ∈ N.
We say the collection F = { Jσ : σ ∈ D} of closed subsets of J fulfills the Moran structure if it satisfies the following Moran
structure conditions (MSC):

(1) For σ ∈ D , Jσ is geometrically similar to J , i.e., there exists a similarity Sσ : Rd → R
d such that Jσ = Sσ ( J ). For

convenience we write J∅ = J .
(2) For k � 0 and σ ∈ Dk, Jσ∗1, Jσ∗2, . . . , Jσ∗nk+1 are subsets of Jσ , and satisfy that int Jσ∗i ∩ int Jσ∗ j = ∅ whenever i 	= j.
(3) For k � 1 and σ ∈ Dk−1,

| Jσ∗ j|
| Jσ | = ck, j for 1 � j � nk,

where |A| denotes the diameter of A.

Suppose that F = { Jσ : σ ∈ D} is a collection of closed subsets of J fulfilling the Moran structure. We call E = E(F) :=⋂
k�1

⋃
σ∈Dk

Jσ a Moran set determined by F . Let Fk = { Jσ : σ ∈ Dk}, then F = ⋃
k�0 Fk . The elements of Fk are called

kth-level basic sets of E and the elements of F are called the basic sets of E . Suppose the set J and the sequences {nk}, {Φk}
are given. We denote by M=M( J , {nk}, {Φk}) the class of the Moran sets satisfying the MSC. We call M( J , {nk}, {Φk}) the
Moran class associated with the triplet ( J , {nk}, {Φk}).

Remark 2.1. From the above definition, we see that if the Moran sets E1, E2 ∈ M( J , {nk}, {Φk}) and E1 	= E2, then the
relative positions of kth-level basic sets of E1 and those of E2 may be different, although they satisfy the same MSC.

Under some mild condition, Hua et al. [4] gave the Hausdorff, packing and upper box dimensions of Moran sets. To state
their result, we need some notations. Let M = M( J , {nk}, {Φk}) be a Moran class. Let c∗ := inf ci, j and cσ = c1,σ1 · · · ck,σk

for σ = σ1 · · ·σk ∈ Dk . Let

s∗ = lim inf
k→∞

sk, s∗ = lim sup
k→∞

sk, (2.1)

where sk satisfies the equation

k∏
i=1

ni∑
j=1

csk
i, j =

∑
σ∈Dk

csk
σ = 1. (2.2)

We can now present the main result of Hua et al. [4].

Theorem 2.1. (See [4].) Suppose that M=M( J , {nk}, {Φk}) is a Moran class satisfying c∗ > 0. Then for any E ∈M,

dimH E = s∗ and dimP E = dimB E = s∗.

It follows from the last theorem that the Moran sets are not Ahlfors regular if s∗ 	= s∗ and one can easily construct such
ones. However, we will prove that the Assouad dimensions of the Moran sets coincide with their packing and upper box
dimensions.
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Theorem 2.2. Suppose that M=M( J , {nk}, {Φk}) is a Moran class satisfying c∗ > 0. Then for any E ∈M,

dimP E = dimB E = dimA E = s∗.

Remark 2.2. As we shall see, the condition c∗ > 0 plays an important role in the proof of Theorem 2.2. However, we
conjecture that dimB E = dimA E = s∗ remains true if the condition c∗ > 0 is removed.

3. Proof of Theorem 2.2

This section is devoted to the proof of Theorem 2.2. For σ ∈ D , we denote by σ− the word obtained by deleting the last
letter of σ . For γ > 0, we define Γ (γ ) by

Γ (γ ) = {
σ ∈ D

∣∣ cσ < γ � σ−}
.

The set J contains an open ball of diameter a since it has nonempty interior. For any σ ∈ Γ (γ ), Jσ contains an open ball of
diameter a| Jσ | � ac∗γ and these open balls are disjoint by the MSC. By a standard argument (see, for example, Lemma 9.2
in [2]) we obtain the following lemma which is a generalization of a result in [5].

Lemma 3.1. There exists a constant � such that

#
{
σ ∈ Γ (γ )

∣∣ B(x, γ ) ∩ Jσ 	= ∅}
� �

for all x ∈ E and γ > 0.

Proof of Theorem 2.2. Fix E ∈ M. Note the inequality (1.2); it is sufficient to prove that dimA E � d for any d > s∗ . By the
extension theorem of measures, there exists a unique Borel probability measure μ supported on E such that

μ( Jσ∗ j) = μ( Jσ ) · | Jσ∗ j|d∑nk
j=1 | Jσ∗ j|d

(3.1)

for all k � 1, σ ∈ Dk−1 and 1 � j � nk . For σ ∈ D , by (3.1), we have

μ( Jσ ) = | Jσ |d | Jσ−|d
| Jσ−∗1|d + · · · + | Jσ−∗n|σ | |d

· · · | J |d
| J1|d + · · · + | Jn1 |d

= | Jσ |d 1

cd
|σ |,1 + · · · + cd|σ |,n|σ |

· · · 1

cd
1,1 + · · · + cd

1,n1

.

It follows from d > s∗ that there exists some positive integer K such that if k > K , then d > sk and therefore

∑
σ∈Dk

cd
σ =

k∑
i=1

nk∑
j=1

cd
i, j �

k∑
i=1

nk∑
j=1

csk
i, j =

∑
σ∈Dk

csk
σ = 1. (3.2)

Fix small enough γ > 0. Note that { Jσ ∩ E | σ ∈ Γ (γ )} is a partition of E; we have

1 = μ

( ⋃
σ∈Γ (γ )

Jσ

)
=

∑
σ∈Γ (γ )

μ( Jσ )

=
∑

σ∈Γ (γ )

| Jσ |d 1

cd|σ |,1 + · · · + cd|σ |,n|σ |
· · · 1

cd
1,1 + · · · + cd

1,n1

�
∑

σ∈Γ (γ )

| J |dcd
σ · 1

(
by (3.2)

)

�
∑

σ∈Γ (γ )

| J |dcd
σ−cd∗

� #
(
Γ (γ )

)| J |dcd∗γ d,

which implies that

#
(
Γ (γ )

)
� 1

| J |dcd∗γ d
. (3.3)

Fix x ∈ E and 0 < r < R . For each σ ,τ ∈ D choose xσ ,τ ∈ Jσ∗τ . We claim that
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B(x, R) ∩ E ⊂
⋃

σ∈Γ (R)
B(x,R)∩ Jσ 	=∅

⋃
τ∈Γ ( r

cσ
)

B(xσ ,τ , r). (3.4)

In fact, it follows from E ⊂ ⋃
σ∈Γ (R) Jσ that

B(x, R) ∩ E ⊂
⋃

σ∈Γ (R)
B(x,R)∩ Jσ 	=∅

Jσ .

Therefore, for any y ∈ B(x, R)∩ E, we can find some σ0 ∈ Γ (R) with B(x, R)∩ Jσ0 	= ∅ such that y ∈ Jσ0 . Note that Jσ0 ∩ E ⊂⋃
τ∈Γ ( r

cσ0
) Jσ0∗τ ; we have

y ∈
⋃

τ∈Γ ( r
cσ0

)

Jσ0∗τ ,

and we can find some τ0 ∈ Γ ( r
cσ0

) such that y ∈ Jσ0∗τ0 . Clearly, | Jσ0∗τ0 | = cσ0∗τ0 � r since τ0 ∈ Γ ( r
cσ0

). On the other hand,

note that xσ0,τ0 ∈ Jσ0∗τ0 ; we have

y ∈ Jσ0∗τ0 ⊂ B(xσ0∗τ0 , r),

which proves (3.4).
It follows from (3.4), (3.3) and Lemma 3.1 that

Nr,R(E) �
∑

σ∈Γ (R)
B(x,R)∩ Jσ 	=∅

∑
τ∈Γ ( r

cσ
)

1
(
by (3.4)

)

�
∑

σ∈Γ (R)
B(x,R)∩ Jσ 	=∅

#

(
Γ

(
r

cσ

))

�
∑

σ∈Γ (R)
B(x,R)∩ Jσ 	=∅

1

| J |dcd∗
·
(

cσ

r

)d (
by (3.3)

)

�
∑

σ∈Γ (R)
B(x,R)∩ Jσ 	=∅

1

| J |dcd∗
·
(

R

r

)d (
since σ ∈ Γ (R)

)

� �

| J |dcd∗
·
(

R

r

)d

,
(
by Lemma (3.1)

)

which implies dimA E � d for any d > s∗ , and therefore the proof of Theorem 2.2 is completed. �
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