

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Analytic Geometry

Generalized L^2 extension theorem and a conjecture of Ohsawa $\stackrel{\star}{\approx}$

Qi'an Guan^a, Xiangyu Zhou^b

^a Beijing International Center for Mathematical Research, Peking University, Beijing, 100871, China

^b Institute of Mathematics, AMSS, and Hua Loo-Keng Key Laboratory of Mathematics, Chinese Academy of Sciences, Beijing, China

ARTICLE INFO

Article history: Received 30 November 2012 Accepted after revision 30 January 2013 Available online 14 February 2013

Presented by Jean-Pierre Demailly

ABSTRACT

In this paper, we determine the optimal constant in the estimate of Ohsawa's generalized L^2 extension theorem. The result holds for holomorphic vector bundles on a class of complex manifolds including both Stein manifolds and complex projective algebraic manifolds. As an application, we obtain a solution to a related conjecture of Ohsawa.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Dans cet article, nous déterminons la constante optimale intervenant dans l'estimée du théorème d'extension L^2 généralisé de Ohsawa. Le résultat vaut pour les fibrés vectoriels holomorphes sur une classe de variétés complexes incluant à la fois les variétés de Stein et les variétés algébriques projectives complexes. Comme application, nous obtenons la solution d'une conjecture correspondante d'Ohsawa.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Background and notations

 L^2 method for solving $\bar{\partial}$ equation is important and developed quickly. A starting point is Hörmander's L^2 existence theorem (see [5]). In [20], Ohsawa proved a general L^2 extension theorem in order to cover all earlier results of him in [21,17–19] in this direction. Before stating Ohsawa's main theorem in [20], we would like to recall the symbols and notations which he used. One considers the following data (M, S): a complex n-dimensional manifold M, a closed complex submanifold S of M, such that there exists a closed subset $X \subset M$ of Lebesgue measure 0 satisfying:

- *a*) *X* is locally negligible with respect to L^2 holomorphic functions, i.e., for any local coordinate neighborhood $U \subset M$ and for any L^2 holomorphic function f on $U \setminus X$, there exists an L^2 holomorphic function \tilde{f} on U such that $\tilde{f}|_{U \setminus X} = f$;
- b) $M \setminus X$ is a Stein manifold which intersects with every component of S.

For the sake of convenience, we say that (M, S) satisfy conditions a), b). Such a kind of manifolds includes:

- 1) Stein manifolds (including open Riemann surfaces);
- 2) Complex projective algebraic manifolds (including compact Riemann surfaces);
- 3) Projective families (see [24,9]).

Let dV_M be a continuous volume form on M. One considers a class of upper semi-continuous function Ψ from M to the interval $[-\infty, 0)$ such that

^{*} The second author was partially supported by NSFC.

E-mail addresses: guanqian@amss.ac.cn (Q. Guan), xyzhou@math.ac.cn (X. Zhou).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.01.012

- 1) $\Psi^{-1}(-\infty) \supset S$, and $\Psi^{-1}(-\infty)$ is a closed subset of *M*;
- 2) If *S* is *l*-dimensional around a point *x*, there exists a local coordinate (z_1, \ldots, z_n) on a neighborhood *U* of *x* such that $z_{l+1} = \cdots = z_n = 0$ on $S \cap U$ and

$$\sup_{U\setminus S} \left| \Psi(z) - (n-l) \log \sum_{l+1}^n |z_j|^2 \right| < \infty.$$

The set of such polar function Ψ will be denoted by #(S).

For each $\Psi \in \#(S)$, one can associate a positive measure $dV_M[\Psi]$ on *S* as the minimum element of the partial ordered set of positive measures $d\mu$ satisfying:

$$\int_{S_l} f \, \mathrm{d}\mu \ge \limsup_{t \to \infty} \frac{2(n-l)}{\sigma_{2n-2l-1}} \int_M f e^{-\Psi} \mathbb{1}_{\{-1-t < \Psi < -t\}} \, \mathrm{d}V_M$$

for any non-negative continuous function f with compact support on M. Throughout the paper S_l denotes the *l*-dimensional component of S, σ_m denotes the volume of the unit sphere in \mathbb{R}^{m+1} .

Let *u* be a continuous section of $K_M \otimes E$, where *E* is a holomorphic vector bundle equipped with a continuous metric *h* on *M*. We define

$$|u|_h^2\Big|_V := \frac{c_n h(e, e) v \wedge \bar{v}}{\mathrm{d} V_M}$$

where $c_n = (-1)^{\frac{n(n-1)}{2}} i^n$, and $u|_V = v \otimes e$ for an open set $V \subset M \setminus X$, v is a continuous section of $K_M|_V$ and e is a continuous section of $E|_V$ (especially, we define

$$|v|^2\Big|_V := \frac{c_n v \wedge \bar{v}}{\mathrm{d}V_M},$$

when v is a continuous section of K_M). It is clear that $|u|_h^2$ is independent of the choice of V, while $|u|_h^2 dV_M$ is independent of the choice of dV_M . Then the space of L^2 integrable holomorphic section of K_M is denoted by $A^2(M, K_M, dV_M^{-1}, dV_M)$. Respectively, the space of holomorphic section of $K_M|_S$ which is L^2 integrable with respect to the measure $dV_M[\Psi]$ is denoted by $A^2(S, K_M|_S, dV_M^{-1}, dV_M[\Psi])$.

Let $\Delta(S)$ be the subset of plurisubharmonic functions in #(S), φ be a locally integrable function on M. Let $\Delta_{\varphi,\delta}(S)$ be the subset of functions Ψ in #(S), such that $\Psi + \varphi$ and $(1 + \delta)\Psi + \varphi$ are both plurisubharmonic functions on M.

Let $\Delta_{h,\delta}(S)$ be the subset of functions Ψ in #(S) which satisfies $\Theta_{he^{-\Psi}} \ge 0$ and $\Theta_{he^{-(1+\delta)\Psi}} \ge 0$ on $M \setminus S$ in the sense of Nakano.

Theorem 1.1. (See [20].) Let (M, S) satisfy conditions a), b), h be a smooth metric on a holomorphic vector bundle E on M with rank r. Then, for any function Ψ on M such that $\Psi \in \Delta_{h,\delta}(S) \cap C^{\infty}(M \setminus S)$, there exists a uniform constant $\mathbf{C} = \max_{1 \le k \le n} \frac{2^{3}\pi}{\frac{\pi^{k}}{k!}}$ such that, for any holomorphic section f of $K_{M} \otimes E|_{S}$ on S satisfying

$$\sum_{k=1}^n \frac{\pi^k}{k!} \int_{S_{n-k}} |f|_h^2 \,\mathrm{d} V_M[\Psi] < \infty,$$

there exists a holomorphic section F of $K_M \otimes E$ on M satisfying F = f on S and

$$\int_{M} |F|_{h}^{2} \mathrm{d} V_{M} \leq \mathbf{C} \left(1 + \delta^{-\frac{3}{2}}\right) \sum_{k=1}^{n} \frac{\pi^{k}}{k!} \int_{S_{n-k}} |f|_{h}^{2} \mathrm{d} V_{M}[\Psi].$$

Especially, if $\Psi \in \Delta(S) \cap \Delta_{h,\delta}(S) \cap C^{\infty}(M \setminus S)$ *, there exists a holomorphic section* F *of* $K_M \otimes E$ *on* M *satisfying* F = f *on* S *and*

$$\int_{M} |F|_h^2 \,\mathrm{d} V_M \leqslant \mathbf{C} \sum_{k=1}^n \frac{\pi^k}{k!} \int_{S_{n-k}} |f|_h^2 \,\mathrm{d} V_M[\Psi].$$

A natural interesting problem is to find the optimal constant **C** and the optimal power of δ in Theorem 1.1, which can be used to prove a conjecture of Ohsawa as an application (see Section 4). In the setting of Ohsawa–Takegoshi [21], the problem for analytic hypersurfaces was widely discussed for various cases in [21,15,18,23,1,7,24,4,16,10,2,3]. In the setting of Ohsawa [18], continuing our work in [14,26], we solved the problem in [12], as a corollary, we obtained a solution of Suita's conjecture [12]. Blocki solved Suita's conjecture for bounded planar domains (see [2,3]).

In the present note, we obtain the optimal constant version of Theorem 1.1. We state our main results in Sections 2 and 3 respectively for two cases: one is on holomorphic vector bundles and polar function Ψ smooth outside *S*, and another is on holomorphic line bundles and upper semi-continuous polar function Ψ . Consequently, we solve a conjecture of Ohsawa. Details will appear in [13]. In the proof of the main results, a theorem in [11] on smoothing of plurisubharmonic functions is used.

2. Optimal constant problem in the generalized L^2 extension theorem on vector bundles

Considering holomorphic vector bundles and polar function Ψ smooth outside *S*, we establish the following optimal constant version of Theorem 1.1:

Theorem 2.1. Theorem 1.1 holds true with the control constant $C(1 + \delta^{-1})$ where C = 1 in the L^2 estimate. Especially, if Ψ is furthermore plurisubharmonic, one gets the control constant C = 1 in the L^2 estimate.

Remark 2.2. C and the power of δ are both optimal. For example, we may take the unit disc with trivial holomorphic line bundle while $S = \{0\}$.

3. Optimal constant problem in the generalized L^2 extension theorem on line bundles

Considering holomorphic line bundles with singular metric and upper semi-continuous polar functions Ψ , we establish the following optimal constant version of Theorem 1.1, which will be used to prove a conjecture of Ohsawa in Section 4.

Theorem 3.1. Let (M, S) satisfy conditions a), b), L be a holomorphic line bundle on M with a continuous metric h (resp. a singular metric h satisfying $\Theta_h \ge \omega$, where ω is a smooth real (1, 1) form on M). Then, for negative function Ψ on M satisfying $\Theta_{he^{-\Psi}} \ge 0$ and $\Theta_{he^{-(1+\delta)\Psi}} \ge 0$ (resp. $\sqrt{-1}\partial \overline{\partial}\Psi + \omega > 0$ and $(1 + \delta)\sqrt{-1}\partial \overline{\partial}\Psi + \omega > 0$) in the sense of current on M, there exists a uniform constant $\mathbf{C} = 1$, such that, for any holomorphic section f of $K_M \otimes L|_S$ on S satisfying $\sum_{k=1}^n \frac{\pi^k}{k!} \int_{S_{n-k}} |f|_h^2 dV_M[\Psi] < \infty$, there exists a holomorphic section F of $K_M \otimes L$ on M satisfying F = f on S and

$$\int_{M} |F|_{h}^{2} \mathrm{d}V_{M} \leqslant \mathbf{C} \left(1+\delta^{-1}\right) \sum_{k=1}^{n} \frac{\pi^{k}}{k!} \int_{S_{n-k}} |f|_{h}^{2} \mathrm{d}V_{M}[\Psi].$$

Especially, if *L* is a holomorphic line bundle on *M* with a singular metric *h* satisfying $\Theta_h \ge 0$ in the sense of current, then, for a negative plurisubharmonic function Ψ on *M* satisfying $\Psi \in \Delta(S)$, there exists a uniform constant $\mathbf{C} = \mathbf{1}$, such that there exists a holomorphic section *F* of $K_M \otimes L$ on *M* satisfying F = f on *S* and

$$\int_{M} |F|_{h}^{2} \mathrm{d}V_{M} \leq \mathbf{C} \sum_{k=1}^{n} \frac{\pi^{k}}{k!} \int_{S_{n-k}} |f|_{h}^{2} \mathrm{d}V_{M}[\Psi]$$

4. A conjecture of Ohsawa

If $\Delta(S)$ is non-empty, we set $G(z, S) := \sup\{u(z): u \in \Delta(S)\}^*$, which is the upper envelope of $\sup\{u(z): u \in \Delta(S)\}$. It is clear that G(z, S) is a plurisubharmonic function on M (see Choquet's Lemma (Lemma 4.23 in [8])). By Proposition 9 in [20], we have $G(z, S) \in \Delta(S)$. If $\Delta(S)$ is empty, $G(z, S) := -\infty$. When $S = \{z\}$ for some $z \in M$, G(z, S) is called the pluricomplex Green function (see [6]).

Let (M, S) satisfy conditions a, b), $G(\cdot, S)$ be the generalized pluricomplex Green function, which is nontrivial. Let dV_M be a continuous volume form on M and let $\{\sigma_j\}_{j=1}^{\infty}$ (resp. $\{\tau_j\}_{j=1}^{\infty}$) be a complete orthogonal system of $A^2(M, K_M, dV_M^{-1}, dV_M)$ (resp. $A^2(S, K_M|_S, dV_M^{-1}, dV_M[G(\cdot, S)])$) and put $\kappa_M = \sum_{j=1}^{\infty} \sigma_j \otimes \bar{\sigma}_j \in C^{\omega}(M, K_M \otimes \bar{K}_M)$ (resp. $\kappa_{M/S} = \sum_{j=1}^{\infty} \tau_j \otimes \bar{\tau}_j \in C^{\omega}(S, K_M \otimes \bar{K}_M)$).

Estimating constant **C** in Theorem 1.1 is motivated by the following conjecture of Ohsawa (see [20]) on (M, S) satisfying conditions a), b), which admits nontrivial generalized pluricomplex Green functions with poles on S:

A conjecture of Ohsawa. $(\pi^k/k!)\kappa_M(x) \ge \kappa_{M/S}(x)$ for any $x \in S_{n-k}$.

The relationship between the conjecture of Ohsawa and the extension theorem was observed and explored by Ohsawa [20], who proved the estimate with $\mathbf{C} = \frac{2^8 \pi}{\pi^k / k!}$. The conjecture of Ohsawa can be seen as an extension of Suita's conjecture (see [25]) for high dimensional manifolds and high codimensional submanifolds (see Section 3 of [20]).

Using Theorem 3.1, we get:

Corollary 4.1 (Solution of the conjecture of Ohsawa). Let (M, S) satisfy conditions a), b), where M admits a nontrivial generalized pluricomplex Green function with poles on S. Then we have $C(\pi^k/k!)\kappa_M(x) \ge \kappa_{M/S}(x)$ for any $x \in S_{n-k}$, where the constant satisfies C = 1.

Remark 4.2. It is known that $\kappa_{M/S}(x) = c_M^2(z)|dz|^2$ when *M* is an open Riemann surface which admit a Green function and $S = \{z\}$ (see Section 3 of [20]), where $c_M(z)$ be the logarithmic capacity of *M* with respect to *z* locally defined by $c_M(z) = \exp \lim_{\xi \to z} (G_M(\xi, z) - \log |\xi - z|)$, where G_M is the negative Green function on *M*. The conjecture of Ohsawa includes Suita's conjecture as a one-dimensional case. Suita's conjecture was posed in [25] originally for open Riemann surfaces admitting Green functions, which is a conjectural answer to an open question posed by Sario and Oikawa (see pages 179 and 342 in [22]) about the relation between the Bergman kernel and logarithmic capacity on open Riemann surfaces.

References

- [1] B. Berndtsson, The extension theorem of Ohsawa–Takegoshi and the theorem of Donnelly–Fefferman, Ann. Inst. Fourier (Grenoble) 46 (4) (1996) 1083– 1094.
- [2] Z. Blocki, On the Ohsawa-Takegoshi extension theorem, preprint, 2012.
- [3] Z. Blocki, Suita conjecture and the Ohsawa-Takegoshi extension theorem, Inventiones Mathematicae, http://dx.doi.org/10.1007/s00222-012-0423-2, in press.
- [4] B. Chen, A remark on an extension theorem of Ohsawa, Chin. Ann. Math., Ser. A 24 (2003) 129-134 (in Chinese).
- [5] J.-P. Demailly, Estimations L² pour l'opérateur d'un fibré vectoriel holomorphe semi-positif au-dessus d'une variété kählérienne complète (L²-estimates for the ∂-operator of a semipositive holomorphic vector bundle over a complete Kähler manifold), Ann. Sci. École Norm. Sup. (4) 15 (3) (1982) 457–511 (in French).
- [6] J.-P. Demailly, Fonction de Green pluricomplexe et mesures pluriharmoniques (Pluricomplex Green functions and pluriharmonic measures), in: Séminaire de théorie spectrale et géométrie, vol. 4, Univ. Grenoble-1, Saint-Martin-d'Hères, 1986, pp. 131–143 (in French), année 1985–1986.
- [7] J.-P. Demailly, On the Ohsawa–Takegoshi–Manivel L^2 extension theorem, in: Proceedings of the Conference in Honour of the 85th Birthday of Pierre Lelong, September 1997, in: Progress in Mathematics, Birkhäuser, Paris, 2000.
- [8] J.-P. Demailly, Complex analytic and differential geometry, electronically accessible at http://www-fourier.ujf-grenoble.fr/~demailly/books.html.
- [9] J.P. Demailly, K\u00e4hler manifolds and transcendental techniquesin algebraic geometry, in: International Congress of Mathematicians 2006, vol. I, Eur. Math. Soc., Z\u00fcrich, 2007, pp. 153-186.
- [10] J.-P. Demailly, Analytic Methods in Algebraic Geometry, Higher Education Press, Beijing, 2010.
- [11] J.E. Fornæss, R. Narasimhan, The Levi problem on complex spaces with singularities, Math. Ann. 248 (1) (1980) 47-72.
- [12] Q.A. Guan, X.Y. Zhou, Optimal constant problem in the L^2 extension theorem, C. R. Acad. Sci. Paris, Ser. I 350 (15–16) (2012) 753–756.
- [13] Q.A. Guan, X.Y. Zhou, Optimal constant in L^2 extension and a proof of a conjecture of Ohsawa, preprint.
- [14] Q.A. Guan, X.Y. Zhou, L.F. Zhu, On the Ohsawa-Takegoshi L^2 extension theorem and the twisted Bochner-Kodaira identity, C. R. Acad. Sci. Paris, Ser. I 349 (13-14) (2011) 797-800.
- [15] L. Manivel, Un théorème de prolongement L^2 de sections holomorphes d'un fibré vectoriel, Math. Z. 212 (1993) 107–122.
- [16] J. McNeal, D. Varolin, Analytic inversion of adjunction: L^2 extension theorems with gain, Ann. Inst. Fourier (Grenoble) 57 (3) (2007) 703–718.
- [17] T. Ohsawa, On the extension of L^2 holomorphic functions. II, Publ. Res. Inst. Math. Sci. 24 (2) (1988) 265–275.
- [18] T. Ohsawa, On the extension of L^2 holomorphic functions. III. Negligible weights, Math. Z. 219 (2) (1995) 215–225.
- [19] T. Ohsawa, On the extension of L^2 holomorphic functions. IV. A new density concept, in: Geometry and Analysis on Complex Manifolds, World Sci. Publ., River Edge, NJ, 1994, pp. 157–170.
- [20] T. Ohsawa, On the extension of L² holomorphic functions. V. Effects of generalization, Nagoya Math. J. 161 (2001) 1–21;
 T. Ohsawa, Erratum to: "On the extension of L² holomorphic functions. V. Effects of generalization" [Nagoya Math. J. 161 (2001) 1–21], Nagoya Math. J. 163 (2001) 229.
- [21] T. Ohsawa, K. Takegoshi, On the extension of L^2 holomorphic functions, Math. Z. 195 (1987) 197–204.
- [22] L. Sario, K. Oikawa, Capacity functions, Die Grundlehren der mathematischen Wissenschaften, vol. 149, Springer-Verlag Inc., New York, 1969.
- [23] Y.-T. Siu, The Fujita conjecture and the extension theorem of Ohsawa-Takegoshi, in: Geometric Complex Analysis, World Scientific, Hayama, 1996, pp. 577-592.
- [24] Y.-T. Siu, Extension of twisted pluricanonical sections with plurisubharmonic weight and invariance of semipositively twisted plurigenera for manifolds not necessarily of general type, in: Complex Geometry, Göttingen, 2000, Springer, Berlin, 2002, pp. 223–277.
- [25] N. Suita, Capacities and kernels on Riemann surfaces, Arch. Ration. Mech. Anal. 46 (1972) 212-217.
- [26] L.F. Zhu, Q.A. Guan, X.Y. Zhou, On the Ohsawa-Takegoshi L² extension theorem and the Bochner-Kodaira identity with non-smooth twist factor, J. Math. Pures Appl. (9) 97 (6) (2012) 579-601.