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Let Ω ⊂R
N be a Lipschitz domain and Γ be a relatively open and non-empty subset of its

boundary ∂Ω . We show that the solution to the linear first-order system:

∇ζ = Gζ, ζ |Γ = 0, (1)

vanishes if G ∈ L1(Ω;R(N×N)×N ) and ζ ∈ W1,1(Ω;RN ). In particular, square-integrable
solutions ζ of (1) with G ∈ L1 ∩ L2(Ω;R(N×N)×N ) vanish. As a consequence, we prove that:

‖| · ‖| : C∞◦
(
Ω,Γ ;R3) → [0,∞), u 
→ ∥∥sym

(∇u P−1)∥∥
L2(Ω)

is a norm if P ∈ L∞(Ω;R3×3) with Curl P ∈ Lp(Ω;R3×3), Curl P−1 ∈ Lq(Ω;R3×3) for some
p,q > 1 with 1/p + 1/q = 1 as well as det P � c+ > 0. We also give a new and different
proof for the so-called ‘infinitesimal rigid displacement lemma’ in curvilinear coordinates:
Let Φ ∈ H1(Ω;R3), Ω ⊂ R

3, satisfy sym(∇Φ�∇Ψ ) = 0 for some Ψ ∈ W1,∞(Ω;R3) ∩
H2(Ω;R3) with det∇Ψ � c+ > 0. Then there exists a constant translation vector a ∈ R

3

and a constant skew-symmetric matrix A ∈ so(3), such that Φ = AΨ + a.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Soit Ω ⊂ R
N un domaine et ∅ = Γ ⊂ ∂Ω un sous-ensemble relativement ouvert de

sa frontière ∂Ω , supposée lipschitzienne. Nous démontrons que la solution du système
linéaire du premier ordre :

∇ζ = Gζ, ζ |Γ = 0, (1)

s’annule si G ∈ L1(Ω;R(N×N)×N ) et ζ ∈ W1,1(Ω;RN ). En particulier, les solutions de carré
intégrable de (1) avec G ∈ L1 ∩ L2(Ω;R(N×N)×N ) s’annulent. Comme conséquence, nous
prouvons que :

‖| · ‖| : C∞◦
(
Ω,Γ ;R3) → [0,∞), u 
→ ∥∥sym

(∇u P−1)∥∥
L2(Ω)

est une norme lorsque P ∈ L∞(Ω;R3×3) avec Curl P ∈ Lp(Ω;R3×3), Curl P−1 ∈ Lq(Ω;R3×3)

pour p,q > 1, 1/p + 1/q = 1, et det P � c+ > 0. Nous présentons aussi une nouvelle
démonstration du lemme du déplacement rigide infinitésimal en coordonnées curvilignes :
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si Φ ∈ H1(Ω;R3) satisfait sym(∇Φ�∇Ψ ) = 0 pour certain Ψ ∈ W1,∞(Ω;R3) ∩ H2(Ω;R3),
avec det∇Ψ � c+ > 0, il existe des constantes a ∈ R

3 et A ∈ so(3) telles que Φ = AΨ + a.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Consider the linear first-order system of partial differential equations:

∇ζ = G ζ, ζ |Γ = 0. (2)

Obviously, one solution is ζ = 0. But is this solution unique? The answer is not as obvious as it may seem; consider for
example in dimension N := 1, G(t) := 1/t in the domain Ω := (0,1) with Γ := {0} ⊂ ∂Ω . Then ζ := id = 0 solves (2).
However, in the latter example, the solution becomes unique if G ∈ L1(Ω), which is easily deduced from Gronwall’s lemma.
Here we can see that the integrability condition on the coefficient G is relevant; for a precise formulation of the result, see
Section 2. The uniqueness of the solution to (2) makes:

‖|u‖| := ∥∥sym
(∇u P−1)∥∥

L2(Ω)
(3)

a norm on

C∞◦
(
Ω,Γ ;R3) := {

u ∈ C∞(
Ω;R3): dist(supp u,Γ ) > 0

}
,

where

C∞(
Ω;R3) := {

u|Ω : u ∈ C∞◦
(
R

3;R3)},

for P ∈ L∞(Ω;R3×3) with det P � c+ > 0, if in addition Curl P ∈ Lp(Ω;R3×3), Curl P−1 ∈ Lq(Ω;R3×3) for some p,q > 1
and 1/q + 1/p = 1. Here the Curl of a matrix field is defined as the row-wise standard curl in R

3.
The question whether an expression of the form (3) is a norm arises when trying to generalize Korn’s first inequality to

hold for non-constant coefficients, i.e.,

∃ c > 0 ∀u ∈ H1◦
(
Ω,Γ ;R3) ∥∥sym

(∇u P−1)∥∥
L2(Ω)

� c‖u‖H1(Ω), (4)

which was first done for P , P−1, Curl P ∈ C1(Ω;R3×3) by Neff in [7], see also [16]. Here H1◦(Ω,Γ ;R3) denotes the closure of
C∞◦ (Ω,Γ ;R3) in H1(Ω;R3). The classical Korn’s first inequality is obtained for P being the identity matrix, see [3,5,7,13,14].
The inequality (4) has been proved in [16] to hold for continuous P−1, whereas it can be violated for P−1 ∈ L∞(Ω) or
P−1 ∈ SO(3) a.e. Each one of the counterexamples given by Pompe in [15–17] uses the fact that for such P , an expression
of the form of ‖| · ‖| is not a norm (it has a nontrivial kernel) on the spaces of functions considered. Quadratic forms of the
type (4) arise in applications to geometrically exact models of shells, plates and membranes, in micromorphic and Cosserat
type models and in plasticity, [8–11].

The so-called ‘infinitesimal rigid displacement lemma in curvilinear coordinates’, a version of which can be found in [1]
and which is important for linear elasticity in curvilinear coordinates (see also [2,4]) states the following: if Ω ⊂ R

N is a
bounded domain, Ψ ∈ W1,∞(Ω;RN ) satisfying det ∇Ψ � c+ > 0 a.e. and Φ ∈ H1(Ω;RN ) with sym(∇Φ�∇Ψ ) = 0 a.e., then
on a dense open subset Ω ′ of Ω , there exist locally constant mappings a : Ω ′ → R

N and A : Ω ′ → so(N) such that locally
Φ = AΨ + a. If Ω is Lipschitz, then the terms ‘locally’ can be dropped. In their proof [1], the authors apply the chain rule
to Θ := Φ ◦ Ψ −1 and use the observation that the conditions sym(∇Φ�∇Ψ ) = 0 and sym(∇Φ(∇Ψ )−1) = 0 are equivalent
by a clever conjugation with (∇Ψ )−1, that is:

(∇Ψ )−� sym
(∇Φ�∇Ψ

)
(∇Ψ )−1 = sym

(∇Φ(∇Ψ )−1) = sym
(∇(

Φ ◦ Ψ −1)) ◦ Ψ, (5)

together with the classical infinitesimal rigid displacement lemma applied on Θ , defined on the domain Ψ (Ω). If a boundary
condition Φ = 0 on a relatively open subset of the boundary is added to this lemma, one obtains Φ = 0 (cf. [2, 1.7-3(b)]).

The main part of our proof that ‖| · ‖| is a norm consists in obtaining u = 0 from sym(∇u P−1) = 0. By taking P = ∇Ψ

to be a gradient, we present another proof of the infinitesimal rigid displacement lemma in dimension N = 3, which yields
Φ = AΨ + a with A ∈ so(N), a ∈ R

N . We need slightly more regularity than in [1], however. The key tool for obtaining our
results is Neff’s formula for the Curl of the product of two matrices, the first of which is skew-symmetric (see [7]).

2. Results

Let us first note that by ∇ we denote not only the gradient of a scalar-valued function, but also (as an usual gradient
row-wise) the derivative or Jacobian of a vector field. The Curl of a matrix is to be taken row-wise as a usual curl for vector
fields.
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Theorem 2.1 (Unique continuation). Let Ω ⊂ R
N , N ∈ N, be a Lipschitz domain, Γ be a relatively open and non-empty subset of ∂Ω

and G ∈ L1(Ω;R(N×N)×N ). If ζ ∈ W1,1(Ω;RN ) solves

∇ζ = G ζ, ζ |Γ = 0,

then ζ = 0.

The differential equation itself cannot guarantee that a weak solution ζ ∈ L1(Ω,RN ) necessarily belongs to W1,1(Ω;RN ).
But this can be ensured by requiring higher integrability of G and ζ , since for bounded domains, e.g., the conditions
G ∈ L2(Ω) and ζ ∈ L2(Ω) imply ∇ζ ∈ L1(Ω) and hence ζ ∈ W1,1(Ω); then an application of the theorem ensures that ζ = 0.
Thus we obtain the uniqueness of L2(Ω)-solutions if the coefficients G are square-integrable. Of course, the same holds if
ζ ∈ Lp(Ω) for arbitrary p � 1. Then G at least needs to be an Lq(Ω)-function, where 1/p + 1/q = 1.

Theorem 2.2 (Norm). Let Ω ⊂ R
3 be a Lipschitz domain, ∅ = Γ ⊂ ∂Ω be relatively open, P ∈ L∞(Ω;R3×3) with det P � c+ > 0,

Curl P ∈ Lp(Ω;R3×3), Curl P−1 ∈ Lq(Ω;R3×3) for some p,q > 1 with 1/p + 1/q = 1. Then

‖| · ‖| : C∞◦
(
Ω,Γ ;R3) → [0,∞), u 
→ ∥∥sym

(∇u P−1)∥∥
L2(Ω)

(6)

defines a norm.

Remark 2.3. In the case of p = q = 2 and for P ∈ SO(3) a.e., Curl P−1 ∈ L2(Ω) is no additional condition, since then Curl P ∈
L2(Ω) ⇔ Curl P−1 ∈ L2(Ω). (Note that if P ∈ SO(3) a.e., then P , Curl P ∈ Lp(Ω) is equivalent to P ∈ W1,p(Ω), cf. [12].)

Conjecture 2.4. Theorem 2.2 holds for P ∈ L∞(Ω) with Curl P ∈ Lp(Ω) and det P � c+ > 0 for some p > 1 or even p � 1.

Remark 2.5. Since the norms ‖| · ‖| and ‖ · ‖H1(Ω) are not shown to be equivalent, it is not clear whether the spaces

H1◦(Ω,Γ ) = C∞◦ (Ω,Γ )
‖·‖H1(Ω) and C∞◦ (Ω,Γ )‖|·‖| coincide. However, by [16], these norms are equivalent if P ∈ C0(Ω) with

det P � c+ > 0.

Conjecture 2.6. The norms are equivalent if P ∈ L∞(Ω) with Curl P ∈ Lp(Ω) and det P � c+ > 0 for some p > 1 or even p � 1.

Theorem 2.7 (Infinitesimal rigid displacement lemma). Let Ω ⊂ R
3 be a Lipschitz domain. Moreover, let Φ ∈ W1,p(Ω;R3) and

Ψ ∈ W1,∞(Ω;R3) ∩ W2,q(Ω;R3) with det∇Ψ � c+ > 0 a.e. and p,q > 1, 1/p + 1/q = 1. If

sym
(∇Φ�∇Ψ

) = 0

then there exist a ∈R
3 and a constant skew-symmetric matrix A ∈ so(3), such that Φ = AΨ + a.

3. Sketch of proofs

An application of Gronwall’s inequality yields Theorem 2.1 for Ω being an interval. The case where Ω is a cube, and Γ

a face of it can be reduced to this situation, ensuring also the unique continuation property for (1). For a general Lipschitz
domain Ω we use a transformation of Γ and a neighborhood thereof onto such a cube. The proofs of Theorem 2.2 and
Theorem 2.7 both rely heavily on the formula for the Curl of a product of two matrices, which reads (see [7]):

Curl(XY ) = mat LY (vec ∇ axl X) + X Curl Y , det LY = −2(det Y )3

in the special case of a skew-symmetric X . There mat:R9 → R
3×3, vec:R3×3 → R

9, axl: so(3) → R
3 and L:R3×3 → R

9×9

denote usual identification operators. It is used to reduce Theorem 2.2 to (1) where an application of Theorem 2.1 yields the
definiteness. This formula is also used to prove the infinitesimal rigid displacement lemma: with a suitable approximation
of A = ∇Φ(∇Ψ )−1, it is possible to show that the weak partial derivatives of A vanish. The details can be found in [6].
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