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We introduce a new model of mast cell response to acupuncture needling based on
the Keller–Segel model for chemotaxis. The needle manipulation induces the release of
a chemoattractant by the mast cells. We show, in a simplified case, that blow-up of
the solution occurs in finite time for large initial data concentrated around the acupoint.
In those conditions, blow-up is the result of aggregation of cells and could indicate
the efficiency of the acupuncture manipulation of the needle at one acupoint.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous présentons un nouveau modèle de la réponse des mastocytes à la manipulation
d’une aiguille d’acupuncture basé sur le modèle de chimiotaxie de type Keller–Segel.
La manipulation de l’aiguille induit la libération du chimioattractant par les mastocytes.
Nous montrons, dans un système simplifié, que la solution devient singulière en un
temps fini pour des conditions initiales suffisamment grandes et concentrées autour du
point acupuncture. Dans ces conditions, l’explosion de la solution résulte de l’agrégation
des cellules et pourrait mesurer l’efficacité de la manipulation de l’aiguille sur le point
d’acupuncture.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

During acupuncture treatment, hair-thin needles are inserted in the skin via manual lifting and thrusting or rotating at
specific points on the body, called acupoints [3]. The needle interacts with the subcutaneous loose connective tissue [10].
This manipulation is shown to cause the wrapping of collagen fibers and send a mechanical signal to the extracellular
matrix cells (ECM) [11]. There is evidence that needle manipulation in acupuncture causes degranulation of mast calls
directly through mechanical stress [18,19]. Mast cells are resident cells in connective tissues, in particular in tissues close to
the external environment [12]. They contain many granules rich in chemicals [16]. Mast cells are well known for their role
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in the inflammatory process, where they accumulate at the site of inflammation in response to a chemical mediator [14].
However, they also appear to have a protective role [17].

To build our model, we make the assumption that mast cells, when mechanically stressed, release two main kinds of
chemicals substances into the ECM: stimulants and chemoattractants. Some stimulants aim at triggering action potential
to nearby nerve endings, that can lead for example to liberate opioids and analgesic in the brain [5]. Some stimulants
increase the blood vessel lumen as well as its permeability and increase blood flow rate after reaching the heart [6,9]. Then,
to maintain a high level of the acupuncture response of mast cells, the chemoattractant participates in cell recruiting of
neighbouring mast cells. Recruited mast cells, in turn, degranulate, creating a positive feedback process and thus a sustained
reaction to acupuncture needling.

Acupuncture as a whole is a complex system. We propose a mathematical model, related to the well-known Keller–Segel
system for chemotaxis [8], of mast cell response to acupuncture needling close to one acupoint.

2. Biological model

We consider the density ng(t, x) of granulated mast cells and the density nd(t, x) of degranulated mast cells around
the needle insertion point. Granulated mast cells are stressed by a mechanical stimulus induced by the needle inserted at
the acupoint. The function Φ(x) represents the stimulus signal. The function Φ is a smooth function of compact support
from R

2 to [0,1].
When excited, granulated mast cells release into the extracellular environment a chemoattractant, c(t, x), a neural stimu-

lant, sn(t, x), and an endocrine stimulant, se(t, x). Then, degranulated mast cells can regenerate their chemical mediators to
become granulated mast cells again. We consider the release of chemical mediators as quasi-instantaneous and we neglect
the transport by convection due to Stokes flow of the matrix fluid created by the motion of the needle.

The following system of partial differential equations in a domain Ω is a model to describe the mast cell response to
acupuncture needling close to one acupoint:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ng

∂t
−Dm∇2ng + ∇.(Sng∇c) = −AΦng + krnd, t > 0, x ∈ Ω,

∂c

∂t
−Dc∇2c = κcAΦng − δcc,

∂nd

∂t
−Dm∇2nd = AΦng − krnd,

∂sn

∂t
−Dsn∇2sn = κnAΦnn − δsn sn,

∂se

∂t
−Dse∇2se = κeAΦng − δse se,

(1)

with initial conditions ng|t=0 = n0
g , nd|t=0 = n0

d, c|t=0 = c0, sn|t=0 = s0
n, se|t=0 = s0

e . All parameters are constants. S > 0 is
the sensitivity of the mast cells to the chemoattractant. A is the activation rate, i.e. the rate of mass cells subjected to
the mechanical stress Φ that will degranulate. Dm, Dc, Dsn and Dse are the diffusion coefficients. δc, δsn and δse are the
degradation rate. κc, κn and κe are the release quantity coefficients of chemoattractant and stimulants. kr is the regeneration
coefficient of degranulated mast cells.

This model differs from another chemotaxis model since the chemoattractant is only emitted close to the needle where
the cells are mechanically stressed.

3. Blow-up in the case of only one state for mast cells

To verify our model (1), we show that blow-up of the density of mast cells occurs when the initial density of mast
cells is higher at the acupoint than at non-acupoint locations, like what Yu et al. observed in [18]. Blow-up corresponds
to the aggregation of the mast cells close to the treated acupoint. To analyse mathematically the behaviour of our model,
we first make some simplifications. From (1), we now consider the evolution of the granulated mast cell density n and the
instantaneous diffusion of the chemoattractant c. We avoid the effects of boundary conditions and consider the system (2)
in the full space R

2. We also consider the stress function Φ to be equally distributed in a region close to the needle, in
other words, for |x|� λ, Φ(x) = 1. Those assumptions lead to the following system:

⎧⎪⎨
⎪⎩

∂tn −Dm∇2n + ∇.(Sn∇c) = −AΦ(x)n, t > 0, x ∈ R
2,

−∇2c = κcAΦ(x)n,
0

(2)
n|t=0 = n � 0.
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Since the initial condition n0 is non-negative, the parabolic equation on n in (2) gives non-negative solutions. Then, we
quantify the spatial distribution of the cells by considering both the total number of cells and the second moment:

m0(t) :=
∫

R2

n(t, x)dx, m2(t) :=
∫

R2

|x|2
2

n(t, x)dx. (3)

Theorem 3.1. In R
2 , let n0 ∈ L1+(R2, (1 + |x|2)dx). Let n be a non-negative smooth solution of (2) and let [0, T ∗) be the maximal

interval of existence. Then, if the initial mass m0(0) is large enough and the second momentum m2(0) is small enough (to be clarified
in the proof ), the solution blows-up as t → T ∗ .

Proof. The proof follows an argument previously introduced by Nagai in [13], and used in [15] and [1].
First step: total mass. Taking the time derivative on (3) and using (2), we get

d

dt
m0(t) =

∫

R2

−AΦ(x)n(t, x)dx � −Am0(t). (4)

Then,

∀t � T ∗, m0(0) � m0(t) �m0(0)e−AT∗
. (5)

Second step: second moment. Taking the time derivative on (3) and using (2), we get

d

dt
m2(t) =

∫

R2

|x|2
2

[
Dm∇2n(t, x) − ∇.

(
Sn(t, x)∇c(t, x)

) − AΦ(x)n(t, x)
]

dx.

The second equation in (2) gives us ∇c(t, x) that we substitute back in the equation. From (5), we get the inequality:

d

dt
m2(t)� 2Dmm0(t)

(
1 − ASκc

8π
m0(t)

)
+ 1

2π
ASκc

∫

R2

∫

R2

x
x − y

|x − y|2
(
1 − Φ(y)

)
n(t, y)n(t, x)dy dx.

We can assume that Φ is a kΦ -Lipchitz function and given |x| � λ
2 and |y| > λ, then |x − y| � λ

2 , i.e. 1
|x−y| �

2
λ

. Moreover,
(1 − Φ(y)) is bounded from above by 1 and (1 − Φ(y)) = 0 for |y|� λ. These properties of function Φ lead to

d

dt
m2(t)� 2Dmm0(0)

(
1 − ASκc

8π
m0(0)e−AT∗

)
+ 3

√
2

2π

ASκc

λ

(
m2(t)

) 1
2
(
m0(0)

) 3
2 + 1

π

ASκc

λ
kΦm2(t)m0(0).

Finally, following the arguments from [2], we have the following inequation:

m2(t) �m2(0) +
t∫

0

f
(
m2(s)

)
ds, (6)

where f (ξ) = 2Dmm0(0)(1 − ASκc
8π m0(0)e−LT ∗

) + 3
√

2
2π

ASκc
λ

ξ
1
2 m0(0)

3
2 + 1

π
ASκc

λ
kΦm0(0)ξ . f is a strictly increasing function

and, if m0(0) > 8π
ASκc

eLT ∗
, it exists a unique ξ∗ such that f (ξ∗) = 0.

So, if m2(0) < ξ∗ , then f (m2(0)) < 0. Therefore,
∫ t

0 f (m2(s))ds < 0 and m2(t)� m2(0)+t f (m2(0)) provided that (6) holds

true. The second moment becomes non-positive for T ∗ � − m2(0)
f (m2(0))

, which is impossible since n is non-negative. Therefore,
a singularity appears before that time and the solution n blows-up at the singularity point. This can only be the appearance
of a singular measure because these manipulations hold for correctly defined L1 solutions (see [15]). �
4. Existence in the case of only one state for mast cells

Considering the simplified model (2), we prove the following L p a priori estimate.

Theorem 4.1. In R
2 , let p > 1 and assume that n0 ∈ L1+(R2, (1 + |x|2)dx). There exists a constant α such that when the initial data

satisfies m0(0) < 4α
pASκc

, there exists a weak solution to (2) in L p(R2,dx) for all times.

Proof. We derive estimates based on the Sobolev inequalities following the argument in [7].
Multiplying (2) by np−1 and integrating, we get

1

p

∫
2

dnp

dt
= −

∫
2

4(p − 1)

p2

∣∣∇np/2
∣∣2 + p − 1

p

∫
2

ASκcΦ(x)np+1 −
∫

2

AΦ(x)np .
R R R R
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Fig. 1. Initial mast cell Gaussian distribution in an acupoint (concentrated distribution) and non-acupoint (dispersed distribution) with the same cell number.

To estimate the integral with power p + 1, we use the following Gagliardo–Nirenberg–Sobolev inequality∫

R2

|n|p+1 � CGNS

∫

R2

|n|
∫

R2

∣∣∇np/2
∣∣2

. (7)

Recalling that Φ(x) � 1 and m0(t) � m0(0),

1

p

∫

R2

dnp

dt
� p − 1

p

(
− 4

p
+ CGNSASκcm0(0)

)∫

R2

∣∣∇np/2
∣∣2 −

∫

R2

AΦ(x)np . (8)

Then, if m0(0) < 4
pCGNSASκc

,
∫
R2 np dx decays in time. From this a priori estimate, we may conclude the existence as done

in [1]. �
5. Numerical tests

In this section, we will consider kr = 0 and thus focus on the two first equations of system (1). Numerical simulations
are carried out using the FreeFem++ software [4]. In the present study, we use one-degree polynomial (P1) Lagrangian finite
element type in space with a fully implicit Euler scheme in time. Let V h be the corresponding space of piecewise linear
continuous functions. The formulation of the problem is the following: Find nm+1

g ∈ V h and cm+1 ∈ V h such that for all
w1, w2 ∈ V h∫

Ω

1

dt

(
nm+1

g − nm
g

)
w1 +

∫
Ω

Dm∇nm+1
g ∇w1 −

∫
Ω

Snm+1
g ∇cm∇w1 = −

∫
Ω

AΦ(x)nm+1
g w1,

∫
Ω

1

dt

(
cm+1 − cm)

w2 +
∫
Ω

Dc∇cm+1∇w2 =
∫
Ω

κcAΦ(x)nm+1
g w2 −

∫
Ω

δccw2.

At each step m, we have a non-linear problem to solve. We use the fixed-point technique. To gain time, mesh adaptation
(a subroutine of FreeFem++) fits the initial condition, i.e., a given cell distribution within the domain of interest, as the
solution evolves locally. We apply Neumann boundary conditions (no cell and chemoattractant fluxes) at the border of the
computational domain.

According to the initial distribution of the mast cell distribution [Fig. 1] on the one hand and to the needle position
with respect to the location of the peak cell density on the other one, i.e., whether the practitioner is an expert or not, the
expected blow-up solution is obtained [Fig. 2 (left)] or not [Fig. 2 (right), Fig. 3].

6. Conclusion

With the mathematical analysis of a simplified model we have shown a mechanism for blow-up in the chemotactic
mechanism involved during acupuncture. A small second moment of the density of mast cells conveys the idea that the cells
are concentrated at the acupuncture points. Blow-up will occur when the initial number of mast cells is high enough and
that they are sufficiently concentrated around the acupuncture points. Our model behaviour corresponds to the behaviour
expected for the response of mast cells to acupuncture needling: a response of the mast cells exists when their density is
low, for instance at a non-acupoint, but is greater when the initial density of mast cells is higher at an acupoint. In that
case, the aggregation of mast cells could reveal the efficiency of the needle manipulation. We provide a numerical validation
of the mathematical model of mast cell response to acupuncture needling.
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Fig. 2. Final distribution of mast cells at an acupoint (left) and at a non-acupoint mast cell pool (right). The expected blow-up solution is only achieved at
the acupoint.

Fig. 3. Needling outside an acupoint. Mesh with refinements in the needle region (center) and mast cell pool (left bottom corner). Absence of significant
change in cell-population distribution.
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