Mathematical Analysis/Partial Differential Equations

A global attractor for a $p(x)$-Laplacian inclusion

Un attracteur global d'une inclusion avec $p(x)$-Laplacien

Jacson Simsen

Instituto de Matemática e Computação, Universidade Federal de Itajubá, Av. BPS n. 1303, Bairro Pinheirinho, 37500-903, Itajubá, MG, Brazil

A R T I C L E IN F O

Article history:

Received 3 January 2013
Accepted after revision 19 February 2013
Available online 1 March 2013
Presented by Jean-Michel Bony

Abstract

In this work we prove the existence of a global attractor for a $p(x)$-Laplacian inclusion of the form $\frac{\partial u}{\partial t}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+\alpha|u|^{p(x)-2} u \in F(u)+h, \alpha=0,1$. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Dans ce travail, nous prouvons l'existence d'un attracteur global d'une inclusion avec $p(x)$-Laplacien de la forme $\frac{\partial u}{\partial t}-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+\alpha|u|^{p(x)-2} u \in F(u)+h, \alpha=0,1$. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Mathematical models with variable exponents appear in physical problems like electrorheological fluids (see [5,10,11]), image processing (see [1,4,6]), and porous medium equations (see [2,3,17]). We also refer the reader to [7] for an overview of differential equations with variable exponents. However, until now few works have appeared in the literature about global attractors for evolution problems involving variable exponents (see [9,12,15,13]).

Let us consider the following two problems:

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t)-\operatorname{div}\left(|\nabla u(t)|^{p(x)-2} \nabla u(t)\right) \in F(u(t))+h, \quad t>0 \tag{P1}\\
u(0)=u_{0}
\end{array}\right.
$$

under homogeneous Dirichlet boundary conditions, and

$$
\left\{\begin{array}{l}
\frac{\partial u}{\partial t}(t)-\operatorname{div}\left(|\nabla u(t)|^{p(x)-2} \nabla u(t)\right)+|u(t)|^{p(x)-2} u(t) \in F(u(t))+h, \quad t>0 \tag{P2}\\
u(0)=u_{0}
\end{array}\right.
$$

under homogeneous Neumann boundary conditions, where $p(\cdot) \in C(\bar{\Omega}), p^{-}:=\inf p(x)>2, \Omega \subset \mathbb{R}^{n}, n \geqslant 1$, is a bounded smooth domain, $h, u_{0} \in H:=L^{2}(\Omega), F: \mathscr{D}(F) \subset L^{2}(\Omega) \rightarrow \mathscr{P}\left(L^{2}(\Omega)\right)$, given by $F(y(\cdot))=\left\{\xi(\cdot) \in L^{2}(\Omega): \xi(x) \in\right.$ $f(y(x)) x$-a.e. in $\Omega\}$ with $f: \mathbb{R} \rightarrow \mathscr{C}_{v}(\mathbb{R})\left(\mathscr{C}_{v}(\mathbb{R})\right.$ is the set of all nonempty, bounded, closed, convex subsets of $\left.\mathbb{R}\right)$ be a multivalued map. Assume that f is Lipschitz, i.e., $\exists C \geqslant 0$ such that dist $\mathscr{H}(f(x), f(z)) \leqslant C\|x-z\|, \forall x, z \in \mathbb{R}$. Consequently, the map $F(u)+h$ has values in $\mathscr{C}_{v}\left(L^{2}(\Omega)\right)$ and is Lipschitz.

[^0]The paper is organized as follows. In Section 2 we present properties of the operators. In Section 3 we establish and prove our results on the existence of global attractors for the $p(x)$-Laplacian inclusions.

2. Properties of the operators

In [15,14] it is proved that the operator $A u:=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)$ is the realization of the operator $A_{1}: V \rightarrow V^{*}$, $V:=W_{0}^{1, p(x)}(\Omega), A_{1} u(v):=\int_{\Omega}|\nabla u(x)|^{p(x)-2} \nabla u(x) \cdot \nabla v(x) \mathrm{d} x$, i.e., $A(u)=A_{1} u$, if $u \in \mathscr{D}(A):=\left\{u \in V ; A_{1} u \in H\right\}$ and is a maximal monotone operator in H. Besides, A is the subdifferential of a proper, convex and lower semi-continuous function $\varphi_{A}: H \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\varphi_{A}(u):= \begin{cases}\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} \mathrm{d} x, & \text { if } u \in V \\ +\infty, & \text { otherwise }\end{cases}
$$

Moreover, we have the following properties of the operator:
Lemma 2.1. (See [14].)

$$
\langle A u, u\rangle_{V^{*}, V} \geqslant\left\{\begin{array}{ll}
\|u\|_{V}^{p^{+}}, & \text {if }\|u\|_{V} \leqslant 1, \\
\|u\|_{V}^{p^{-}}, & \text {if }\|u\|_{V} \geqslant 1,
\end{array} \quad \text { where } p^{+}:=\sup _{x \in \Omega} p(x)\right.
$$

In [16] it is proved that the operator $B u:=-\operatorname{div}\left(|\nabla u|^{p(x)-2} \nabla u\right)+|u|^{p(x)-2} u$ is the realization of the operator $B_{1}: X \rightarrow X^{*}$ with $X:=W^{1, p(x)}(\Omega), B_{1} u(v):=\int_{\Omega}|\nabla u(x)|^{p(x)-2} \nabla u(x) \cdot \nabla v(x) \mathrm{d} x+\int_{\Omega}|u(x)|^{p(x)-2} u(x) v(x) \mathrm{d} x$, i.e., $B(u)=B_{1} u$, if $u \in \mathscr{D}(B):=\left\{u \in X ; B_{1} u \in H\right\}$ and is a maximal monotone operator in H. Besides, B is the subdifferential of a proper, convex and lower semi-continuous function $\varphi_{B}: H \rightarrow \mathbb{R} \cup\{+\infty\}$ defined by

$$
\varphi_{B}(u):= \begin{cases}{\left[\int_{\Omega} \frac{1}{p(x)}|\nabla u|^{p(x)} \mathrm{d} x+\int_{\Omega} \frac{1}{p(x)}|u|^{p(x)} \mathrm{d} x\right],} & \text { if } u \in X, \\ +\infty, & \text { otherwise. }\end{cases}
$$

Moreover, we have the following properties of the operator:
Lemma 2.2. (See [16].)

$$
\langle B u, u\rangle_{X^{*}, X} \geqslant \begin{cases}\frac{1}{2^{p^{+}-1}}\|u\|_{X}^{p^{+}}, & \text {if }\|u\|_{X} \leqslant 1, \\ \frac{1}{2^{p^{-}-1}}\|u\|_{X}^{p^{-}}, & \text {if }\|u\|_{p(x)} \geqslant 1 \text { and }\|\nabla u\|_{p(x)} \geqslant 1, \\ \|\nabla u\|_{p(x)}^{p^{-}}+\|u\|_{p(x)}^{p^{+}}, & \text {if }\|u\|_{p(x)} \leqslant 1 \text { and }\|\nabla u\|_{p(x)} \geqslant 1, \\ \|\nabla u\|_{p(x)}^{p^{+}}+\|u\|_{p(x)}^{p^{-}}, & \text {if }\|u\|_{p(x)} \geqslant 1 \text { and }\|\nabla u\|_{p(x)} \leqslant 1,\end{cases}
$$

where $\|u\|_{p(x)}:=\inf \left\{\lambda>0 ; \int_{\Omega}\left|\frac{u(x)}{\lambda}\right|^{p(x)} \mathrm{d} x \leqslant 1\right\}$.

3. Existence of the global attractors

The following two propositions follow from Lemma 5 and Lemma 6 in [8].

Proposition 3.1. The inclusion in (P1) defines a strict multivalued semigroup (or strict m-semiflow) $G_{1}(t, \cdot): H \rightarrow \mathscr{P}(H)$ where $G_{1}\left(t, u_{0}\right)$ is the set of all integral solutions of (P1) beginning at $u_{0} \in H$ valuated at time t.

Proposition 3.2. (See [16].) The inclusion in (P2) defines a strict multivalued semigroup (or strict m-semiflow) $G_{2}(t, \cdot): H \rightarrow \mathscr{P}(H)$ where $G_{2}\left(t, u_{0}\right)$ is the set of all integral solutions of (P2) beginning at $u_{0} \in H$ valuated at time t.

Let us consider the following condition:
(\mathscr{H}) The sets $M_{K}:=\left\{u \in D(\varphi):\|u\|_{H} \leqslant K, \varphi(u) \leqslant K\right\}$ are compact in H for any $K>0$.
We intend to use the following:

Theorem 3.1. (See [8].) Let ($\mathscr{H})$ be satisfied. Suppose that there exist $\delta>0, M>0$ such that $\forall u \in \mathscr{D}(\partial \varphi),\|u\| \geqslant M, \forall y \in-\partial \varphi(u)+$ $F(u)+h$,

$$
\begin{equation*}
(y, u) \leqslant-\delta \tag{1}
\end{equation*}
$$

Then the multivalued semigroup G has a global attractor R. It is the minimal closed set attracting each bounded set. It is compact, invariant and maximal among all negatively semi-invariant bounded subsets in H.

Now, we establish our result:
Theorem 3.2. The multivalued semigroup associated with problem ($P 1$) has a global attractor R_{1}. It is the minimal closed set attracting each bounded set. It is compact, invariant and maximal among all negatively semi-invariant bounded subsets in H.

Proof. First, we will to prove that the condition (\mathscr{H}) is satisfied. Indeed, since $V \Subset H$ and

$$
M_{K}:=\left\{u \in \mathscr{D}\left(\varphi_{A}\right) ;\|u\|_{H} \leqslant K, \varphi_{A}(u) \leqslant K\right\}=\overline{M_{K}}
$$

it is sufficient to show that for each $K>0, M_{K}$ is a bounded set in V. Let $K>0$ and $u \in M_{K}$. Then, $\langle A u, u\rangle_{V^{*}, V} \leqslant K p^{+}$. From Lemma 2.1, $\|u\|_{V} \leqslant \max \left\{\left[K p^{+}\right]^{\frac{1}{p^{-}}},\left[K p^{+}\right]^{\frac{1}{p^{+}}}\right\}$. So, the condition (\mathscr{H}) is satisfied. Now, we intend to show that the condition (1) in Theorem 3.1 is satisfied. Let $u \in \mathscr{D}(A), \xi \in F(u)$. Since the map f is Lipschitz and has values in $\mathscr{C}_{v}(\mathbb{R})$ it is easy to see that there exist $D_{1}, D_{2} \geqslant 0$ such that $\sup _{y \in f(s)}|y| \leqslant D_{1}+D_{2}|s|, \forall s \in \mathbb{R}$. Consequently, there are constants $k_{1}, k_{2}>0$ such that $\|\xi+h\|_{H} \leqslant k_{1}\|u\|_{H}+k_{2}, \forall \xi \in F(u)$. Using the immersion $V \subset H$, we have that $\|u\|_{H} \leqslant \sigma\|u\|_{V}$ for some $\sigma>1$. Using Lemma 2.1, we obtain $\langle A u, u\rangle_{V^{*}, V} \geqslant\left(\frac{1}{\sigma}\right)^{p^{-}}\|u\|_{H}^{p^{-}}$for $\|u\|_{H} \geqslant \sigma$. Then, using the Cauchy-Schwarz and Young inequalities, we get $\langle-A u+\xi+h, u\rangle_{V^{*}, V} \leqslant-\left(\frac{1}{\sigma}\right)^{p^{-}}\|u\|_{H}^{p^{-}}+k_{1}\|u\|_{H}^{2}+k_{2}\|u\|_{H} \leqslant-\frac{1}{2 \sigma^{p^{-}}}\|u\|_{H}^{p^{-}}+k_{3}$ for $\|u\|_{H} \geqslant \sigma$, with $k_{3}:=\frac{k_{1}^{\alpha}}{\alpha \epsilon_{0}^{\alpha}}+\frac{k_{2}^{q^{-}}}{q^{-} \epsilon_{0}^{q^{-}}}$, where $\frac{2}{p^{-}}+\frac{1}{\alpha}=1, \frac{1}{p^{-}}+\frac{1}{q^{-}}=1$ and $\epsilon_{0}>0$ is such that $\frac{2}{p^{-}} \epsilon_{0}^{p^{-} / 2}+\frac{1}{p^{-}} \epsilon_{0}^{p^{-}}<\frac{1}{2 \sigma^{p^{-}}}$. Considering $M:=\max \left\{\left[2 \sigma^{p^{-}}\left(1+k_{3}\right)\right]^{1 / p^{-}}, \sigma\right\}>0$ and $\delta:=1$, we have $\langle-A u+\xi+h, u\rangle_{V^{*}, V} \leqslant-\delta$ for all $u \in \mathscr{D}(A)$ with $\|u\|_{H}>M$. So, condition (1) is satisfied and the result follows from Theorem 3.1.

Theorem 3.3. The multivalued semigroup associated with problem ($P 2$) has a global attractor R_{2}. It is the minimal closed set attracting each bounded set. It is compact, invariant and maximal among all negatively semi-invariant bounded subsets in H.

Proof. Let $K>0$ and $u \in M_{K}=\left\{u \in \mathscr{D}\left(\varphi_{B}\right) ;\|u\|_{H} \leqslant K, \varphi_{B}(u) \leqslant K\right\}$. As a consequence of Lemma 2.2, we get $\|u\|_{X} \leqslant$ $\max \left\{\left[2 p^{+} K 2^{\left(p^{-}-1\right)}\right]^{\frac{1}{p^{--1}}}+1,\left[2^{p^{+}} p^{+} K\right]^{\frac{1}{p^{+}}}\right\}$. So, the condition (\mathscr{H}) is satisfied. The rest of the proof is completely analogous to the proof of Theorem 3.2, but here we use Lemma 2.2 to show that $\langle B u, u\rangle_{X^{*}, X} \geqslant \min \left\{\frac{1}{\rho^{p^{-}}\left(2^{p^{-}}-1\right)}, \frac{1}{\gamma^{p^{-}}}\right\}\|u\|_{H}^{p^{-}}$for $\|u\|_{H} \geqslant \gamma$, where $\gamma>1$ is such that $\|u\|_{H} \leqslant \gamma\|u\|_{p(x)}$ and $\rho>1$ is such that $\|u\|_{H} \leqslant \rho\|u\|_{X}$.

Corollary 3.4. The global attractors R_{1}, R_{2} are bounded in V and X, respectively.
Proof. Let $T>0$. Since R_{1} is negatively semi-invariant, we have $R_{1} \subset G\left(t, R_{1}\right), \forall t \geqslant 0$. In particular, $R_{1} \subset G\left(T, R_{1}\right)$. From Corollary 3 in [8], there exists $K>0$ such that $G\left(T, R_{1}\right) \subset M_{K}$. As M_{K} is bounded in V and $R_{1} \subset M_{K}$, we obtain that R_{1} is bounded in V. Analogously for R_{2}.

Acknowledgements

The author was partially supported by FAPEMIG grant CEX-APQ-04098-10. The author thanks the anonymous referee for careful readings and suggestions.

References

[1] R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Comput. Math. Appl. 56 (2008) 874-882.
[2] S.N. Antonstev, S.I. Shmarev, A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions, Nonlinear Anal. 60 (2005) 515-545.
[3] S.N. Antontsev, S. Shmarev, Existence and uniqueness of solutions of degenerate parabolic equations with variable exponents of nonlinearity, J. Math. Sci. 150 (5) (2008) 2289-2301.
[4] Y. Chen, S. Levine, M. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66 (4) (2006) $1383-1406$.
[5] L. Diening, P. Harjulehto, P. Hästö, M. Rủžička, Lebesgue and Sobolev Spaces with Variable Exponents, Springer-Verlag, Berlin, Heidelberg, 2011.
[6] Z. Guo, Q. Liu, J. Sun, B. Wu, Reaction-diffusion systems with $p(x)$-growth for image denoising, Nonlinear Anal. Real World Appl. 12 (2011) $2904-2918$.
[7] P. Harjulehto, P. Hästö, U. Lê, M. Nuortio, Overview of differential equations with non-standard growth, Nonlinear Anal. 72 (2010) 4551-4574.
[8] V.S. Melnik, J. Valero, On attractors of multivalued semi-flows and differential inclusions, Set-Valued Anal. 6 (1998) 83-111.
[9] W. Niu, Long-time behavior for a nonlinear parabolic problem with variable exponents, J. Math. Anal. Appl. 393 (2012) 56-65.
[10] K. Rajagopal, M. Růžička, Mathematical modelling of electrorheological fluids, Contin. Mech. Thermodyn. 13 (2001) 59-78.
[11] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., vol. 1748, Springer-Verlag, Berlin, 2000.
[12] J. Simsen, A global attractor for a $p(x)$-Laplacian problem, Nonlinear Anal. 73 (2010) 3278-3283.
[13] J. Simsen, M.S. Simsen, PDE and ODE limit problems for $p(x)$-Laplacian parabolic equations, J. Math. Anal. Appl. 383 (2011) 71-81.
[14] J. Simsen, M.S. Simsen, On $p(x)$-Laplacian parabolic problems, Nonlinear Stud. 18 (3) (2011) 393-403.
[15] J. Simsen, M.S. Simsen, Existence and upper semicontinuity of global attractors for $p(x)$-Laplacian systems, J. Math. Anal. Appl. 388 (2012) 23-38.
[16] J. Simsen, M.S. Simsen, F.B. Rocha, Existence of solutions for some classes of parabolic problems involving variable exponents, 2012, submitted for publication.
[17] L. Songzhe, G. Wenjie, C. Chunling, Y. Hongjun, Study of the solutions to a model porous medium equation with variable exponent of nonlinearity, J. Math. Anal. Appl. 342 (2008) 27-38.

[^0]: E-mail addresses: jacson@unifei.edu.br, j.simsen@bol.com.br.

