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r é s u m é

Nous obtenons un algorithme pour le calcul explicite des valeurs des rayons de convergence
spectrales non solubles des solutions d’un module différentiel sur un point de type 2, 3 ou
4 de la droite affine de Berkovich.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

By a theorem of Young [10], the small values of the radii of convergence of the solutions of a differential operator
are explicit, and coincide with the small slopes of the Newton polygon of a differential operator attached to the module
(cf. Proposition 2.2). Larger radii are not immediately readable on the coefficients of the operator. This discrepancy is a pe-
culiarity of the p-adic world: only small radii are “visible”. To overcome this problem, B. Dwork observed that the pull-back
by the Frobenius functor increases the radii of the solutions, and together with G. Christol [3] they constructed an inverse
of the Frobenius functor (often called Frobenius antecedent) in order to make the radii of the solutions smaller and hence
explicitly intelligible in a cyclic basis. Although theoretically satisfactory, the inversion of Frobenius is a completely implicit
operation. Moreover, the antecedent exists only if all the radii of the solutions are not small. So one is obliged to factorize
the module by the radii of the solutions if one wants to understand the non-minimal radii of the solutions. The factorization
is also an implicit operation. Recently, in [6], K. Kedlaya observed that the Frobenius push-forward operation has essentially
the same effects as the inversion of the Frobenius on the radii of the solutions, and he is able to control the exact behavior
of all the radii of the solutions under this operation (even small radii).1 The Frobenius push-forward functor is completely
explicit, and it allows us to obtain a concrete algorithm to compute the radii of the solutions that are not maximal (i.e. non-
solvable). The price to pay is that the dimension of the push-forward by Frobenius is p-times that of the original module,
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1 The very first reference for this is [1], in which G. Christol introduces the push-forward, and its relation with the pull-back, and uses it to prove the
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so that the complexity of the algorithm is multiplied by p at each application of the push-forward.2 Hence, more the radius
is large, more complexity increases. Moreover, the algorithm admits an end if and only if all the radii are not maximal
(i.e. non-solvable). Eventually we provide the algorithm, but we avoid to provide a complete formula as one does for rank-
one equations (cf. [2]3). Indeed, complexity seems so great that the formula would result not being useful to be written.
Explicit examples are quite complicated, even in the rank-one case. This note is intended to make explicit the computations,
and the link between the different results, with a view to making them explicitly calculable by a computer.

1. Radii of convergence

Let (K , |.|) be a complete field with respect to an ultrametric absolute value |.| : K → R�0. Let L/K be a complete
valued field extension, let c ∈ L, and ρ > 0. For all polynomial P (T ) := ∑

i ai T i ∈ K [T ] define |P |c,ρ := supn�0 |P (i)(c)|ρn/n!.
The setting |P1/P2|c,ρ := |P1|c,ρ/|P2|c,ρ defines an absolute value on the field of fraction K (T ) := Frac(K [T ]), and hence a

Berkovich point ξc,ρ of the affine line A
1,an
K . Since ρ > 0 if c ∈ K one obtains in this way all the points of type 2 or 3 of A1,an

K ,
if one allows c /∈ K one also has all points of type 4. The derivative d/dT extends by continuity to the completion Hc,ρ of
(K (T ), |.|c,ρ). A differential module over Hc,ρ is a finite dimensional Hc,ρ -vector space M together with a K -linear map
∇ : M → M satisfying ∇( f m) = d( f )m + f ∇(m), for all f ∈ Hc,ρ , m ∈ M. Let r(ξc,ρ) � ρ be the radius of the point ξc,ρ (cf.

[9, Section 1.3.1]). If Ω/K is a complete valued field extension such that A
1,an
Ω has an Ω-rational point tc,ρ ∈ Ω lifting ξc,ρ ,

then r(ξc,ρ) is the radius of the largest open disk D−
Ω(tc,ρ , r(ξc,ρ)) satisfying D−

Ω(tc,ρ , r(ξc,ρ)) ∩ K alg = ∅.

Definition 1.1. Let r := rank(M). For i = 1, . . . , r we denote by Ri = RM,sp
i (ξc,ρ) � r(ξc,ρ) the radius of the largest open

disk in D−
Ω(tc,ρ , r(ξc,ρ)) centered at tc,ρ on which M has at least r − i + 1 Ω-linearly independent Taylor solutions (cf.

[9, Section 4.2] or [6, 11.9]). One has R1 �R2 � · · ·�Rr .

We say that Ri is solvable if Ri = r(ξc,ρ). In this paper, we provide an algorithm computing non-solvable radii.

2. Comparison of Newton polygons and computation of small radii

Let r � 1 be an integer. A slope sequence is the data of r real numbers s1 � · · · � sr in increasing order. Define the
i-th partial height as hi := s1 + · · · + si . A slope sequence defines univocally a convex function h : [0, r] → R by h(0) := 0,
h(i) := hi , and h(x) = si x + (hi − i · si) for all x ∈ ]i − 1, i], i = 0, . . . , r. The function h is called the Newton polygon with slopes
s1 � · · ·� sr .

Definition 2.1. The Newton polygon with slopes si := sM,sp
i (ξc,ρ) := ln(RM,sp

i (ξc,ρ)) is called the spectral Newton polygon of M.

We denote by hi := hM,sp
i (ξc,ρ) its i-th partial height.

Let L = ∑r
i=0 gr−idi , gi ∈ Hc,ρ , be a differential operator with g0 = 1. Let v0 = 0, and for all i = 1, . . . , r let vi :=

− ln(|gi|c,ρ/ωi), where ω := limn |n!|1/n . It is understood that if gi = 0 then vi = +∞. Define the spectral Newton polygon
NP(L) as the intersection of all upper half planes Ha,b := {(x, y) ∈ R

2 such that y � ax + b} with {(i, vi)}i=0,...,r ⊂ Ha,b . Let
hL : [0, r] → R be the convex function whose epigraph is NP(L): hL(x) = min{y such that (x, y) ∈ NP(L)}. Explicitly, one
has hLi := hL(i) = sups∈R{s · i +min j=0,...,r v j − s · j}. Then NP(L) is the Newton polygon with slopes {sLi := hLi −hLi−1}i=1,...,r .

Proposition 2.2. (See [10].) Let L be a differential operator as above and let M be the differential module defined by L. Let C :=
ln(ω · r(ξc,ρ)), then for all i = 1, . . . , r, one has

min
(
sM,sp

i , C
) = min

(
sLi , C

)
. (2.1)

Remark 2.3. In order to apply (2.1), we need an algorithm to find a cyclic basis of M (cf. Section 3). If the absolute value
of K is trivial on Z (i.e. if |n| = 1 for all n ∈ Z − {0}), then ω = 1, and Proposition 2.2 allows us to find all the radii Ri .

If the absolute value of K is p-adic (i.e. if |p| < 1), then ω = |p| 1
p−1 < 1. In this case, we also need a technique (Frobenius

push-forward) making the (non-solvable) radii smaller than ωr(ξc,ρ) (cf. Section 4).

2 Xavier Caruso recently pointed out that the explicit factorization of an operator by the radii of convergence seems to be concretely implementable into
a machine. This would highly reduce the complexity of the present algorithm, since by considering the right factor of the push-forward by Frobenius the
dimension remains constant at each step.

3 The formula that we have contributed to prove in [2] is based on a completely different approach, and it uses Witt vectors (following techniques of [8])
to explicitly describe Taylor solutions of a rank-one differential equation.
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3. Explicit cyclic vector

Let (F ,d) be a differential field and let F 〈d〉 = ⊕
i�0 F ◦di be the Weil algebra of differential operators. The multiplication

of F 〈d〉 extends that of F = F ◦ d0 by the rule d ◦ f = f ◦ d + d( f ), for all f ∈ F . Finite dimensional differential modules
over F are exactly torsion left F 〈d〉-modules. The so-called cyclic vector theorem asserts that all differential modules are
not only torsion modules over F 〈d〉: they are cyclic modules, i.e. of the form (M,∇) = (F 〈d〉/F 〈d〉L,d), for some L :=∑r

i=0 gr−idi ∈ F 〈d〉, with g0 = 1, gi ∈ F . The image in the quotient of {1,d,d2, . . . ,dr−1} forms a basis of M, and the action
of ∇ is given by the multiplication by d in the quotient. In fact, the cyclic vector theorem is equivalent to the existence
of an element c ∈ M, called cyclic vector, such that {c,∇(c),∇2(c), . . . ,∇r−1(c)} is a basis of M. In this case, if ci := ∇ i(c),
and if ∇r(c0) = ∑r−1

i=0 f ici , then f i = −gr−i . The existence of such a vector is due to [4, Ch. II, Lemme 1.3]. Subsequently,
N.M. Katz provided the following explicit algorithm:

Theorem 3.1. (See [5].) Let (M,∇) be a differential module over (F ,d) of rank r, and let e := {e0, . . . , er−1} ⊂ M be a basis of M. Let
a0, . . . ,ar(r−1) ∈ F be r(r − 1) + 1 distinct constants i.e. d(ai) = 0. Then at least one of the following elements of M is a cyclic vector:

c(e, T − ai) :=
r−1∑
j=0

(T − ai)
j

j!
j∑

k=0

(−1)k
(

j

k

)
∇k(e j−k). (3.1)

Remark 3.2. The explicit base change matrices to the Katz’s cyclic basis are quite complicated and have been explicitly
computed in [7]. On the other hand, the proof of the existence of a cyclic vector of Deligne [4, Ch. II, Lemme 1.3] proves
that the family of cyclic vectors in a given module is the complement of a hypersurface. The base change matrices of Katz’s
algorithm are quite involved and hard to find by hand, even in small examples. It is often convenient to pick an arbitrary
vector and test if it is cyclic.

Remark 3.3. One shall avoid the use of a cyclic basis using [6, Lemma 6.7.3, Theorem 6.7.4, Conjecture 4.4.9]. This should
permit to compute “small” radii of Proposition 2.2 directly in terms of the norms of the eigenvalues of the characteristic
polynomial of the original matrix of ∇ , without using any cyclic vector.

4. Frobenius push-forward and explicit computation of larger radii

In this section, we assume that |p| < 1 (cf. Remark 2.3).

Hypothesis 4.1. RM,sp
i is insensitive to scalar extensions of K , and by translations. So in the sequel we will assume c = 0

and replace the indexation (c,ρ) by ρ . In this case, one has r(ξρ) = ρ . We then work with |.|ρ , ξρ , Hρ , r(ξρ) = ρ with the
evident meaning of notation. If the reader needs to preserve the setting (c,ρ), the same computations hold replacing the
map ϕ : T �→ T p by T �→ (T − c)p + c. Or alternatively one also can preserve ϕ : T → T p , and proceed as in [9, Section 7]
to check the behavior of the radii by Frobenius at points that are close enough to the segment ρ �→ |.|0,ρ (this is often

necessary if one needs the slopes of RM,sp
i along a Berkovich path ρ �→ |.|c,ρ , with c ∈ K and ρ close to |c|).

Let T̃ , T be two variables, and let ϕ : K (T ) → K (T̃ ) be the ring morphism sending T into T̃ p . This extends into an

isometric inclusion ϕ : Hρp → Hρ of degree p. One has the rule d
dT ( f (T )) = d/dT̃

pT̃ p−1 ( f (T )), for all f ∈ K (T ). We call

dρp := d

dT
, dρ := d

dT̃
, d̃ρp := (

pT̃ p−1)−1 d

dT̃
. (4.1)

Let (M̃,∇) be a differential module over (Hρ,dρ) of rank r. Since (̃dρp )|Hρp
= dρp , then (M̃, (pT̃ p−1)−1∇) is a differential

module over (Hρ, d̃ρp ) that can be seen (by restriction of the scalars) as a differential module over (Hρp ,dρp ) of rank pr.
We call (ϕ∗M̃,ϕ∗∇) the differential module so obtained.

4.1. Explicit matrix of ϕ∗∇

One has a direct sum decomposition Hρ = ⊕p−1
k=0 ϕ(Hρp ) · T̃ k , so that each g(T̃ ) ∈ Hρ can be uniquely writ-

ten as g(T̃ ) = ∑p−1
k=0 gk(T̃ p)T̃ k = ∑p−1

k=0 gk(T )T̃ k . The derivation d̃ρp stabilizes globally each factor and d̃ρp (gk(T )T̃ k) =
(dρp (gk(T )) + k

pT gk(T ))T̃ k . For all g(T̃ ) ∈ Hρ , we define ϕ∗(g)(T ) ∈ M p×p(Hρp ) as the matrix of the multiplication by

g(T̃ )/(pT̃ p−1), with respect to the basis 1, T̃ , . . . , T̃ p−1 over Hρp . One has
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ϕ∗(g)(T ) = (pT )−1 ·

⎛
⎜⎜⎜⎜⎜⎝

T gp−1(T ) T gp−2(T ) T gp−3(T ) · · · · · · · · · T g0(T )

g0(T ) T gp−1(T ) T gp−2(T ) T gp−3(T ) · · · · · · T g1(T )

g1(T ) g0(T ) T gp−1(T ) T gp−2(T ) T gp−3(T ) · · · T g2(T )

· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·

gp−2(T ) gp−3(T ) · · · · · · g1(T ) g0(T ) T gp−1(T )

⎞
⎟⎟⎟⎟⎟⎠ . (4.2)

Notice that the terms over the diagonal are multiplied by T . Let (M̃, ∇̃) be a differential module over Hρ . Fix an Hρ -linear
isomorphism H r

ρ
∼−→ M̃ (i.e. a basis of M̃), and let d

dT̃
− G(T̃ ) be the map ∇̃ in this basis, where G(T̃ ) = (gi, j(T̃ ))i, j=1,...,r ∈

Mr×r(Hρ). Writing H r
ρ = (

⊕p−1
k=0 ϕ(Hρp ) · T̃ k)r , one sees that the multiplication by (pT̃ p−1)−1G(T̃ ) is given by the block

matrix:

ϕ∗(G)(T ) := (
ϕ∗(gi, j)(T )

)
i, j=1,...,r ∈ Mpr×pr(Hρp ). (4.3)

The action of ϕ∗(∇̃) is then given by dρp + Nr − ϕ∗(G)(T ), where Nr ∈ M pr×pr(N) is a diagonal matrix whose i-th entry of
the diagonal is (q(i) − 1)/pT , where 0 � q(i) < p is the rest of the Euclidean division of i by p: i = s · pn + q(i). Nr then has
p blocks on the diagonal of the form (pT )−1diag(0,1,2, . . . , p − 1).

4.2. Behavior of the radii by Frobenius push-forward

Theorem 4.2. (See [6, Theorem 10.5.1].) Let R1 � · · · � Rr be the spectral radii of M̃ at ξρ (cf. Definition 1.1). Let i1 be such that
Ri1 �ωρ <Ri1+1 .4 Then, up to permutation, the spectral radii of ϕ∗M̃ at ξρp are:⋃

i�i1

{|p|ρ p−1Ri, . . . , |p|ρ p−1Ri︸ ︷︷ ︸
p-times

} ⋃
i>i1

{
Rp

i ,ωpρ p, . . . ,ωpρ p︸ ︷︷ ︸
p−1-times

}
. (4.4)

If s1 � · · ·� sr is the slope sequence of the spectral Newton polygon of M̃ at ξρ , and if i0 � i1 satisfies Ri0 < ρ =Ri0+1,5

then by Theorem 4.2 the slope sequence associated with ϕ∗M̃ at ξρp is:

p-times︷ ︸︸ ︷
ln

(|p|ρ p−1) + s1 = · · · = ln
(|p|ρ p−1) + s1 � · · · �

p-times︷ ︸︸ ︷
ln

(|p|ρ p−1) + si1 = · · · = ln
(|p|ρ p−1) + si1

�

(p−1)(r−i1)-times︷ ︸︸ ︷
ln

(
ωpρ p) = · · · = ln

(
ωpρ p)

< psi1+1 � · · ·� psi0 <

(r−i0)-times︷ ︸︸ ︷
ln

(
ρ p) = · · · = ln

(
ρ p)

. (4.5)

We have two main goals here. Firstly the sequence s1 � · · · � sr is perfectly determined by the knowledge of the slope
sequence (4.5) of ϕ∗M̃ (even if some of the si are equal to the critical value ln(ωρ)), see [9, Proposition 6.17] for a more
precise statement. Secondly the values of si satisfying ln(ω1/pρ) � si < ln(ω1/pρ) correspond to small radii6 of ϕ∗M̃ that
are explicitly intelligible by Proposition 2.2. Iterating this construction by performing several times the push-forward, one
obtains an explicit algorithm that computes all the non-solvable radii R1, . . . ,Ri0 in a finite number of steps. Once this
has been achieved, one knows in fact all the spectral radii since the remaining radii are all equal to ρ . Unfortunately,
Proposition 2.2 does not furnish any information about radii that are larger than ωρ , so (unless the radii are all not solvable)
it seems impossible to know whether the algorithm is ended or if one needs more applications of the Frobenius push-
forward.
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