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In this work we investigate the conservativity of the cell-centered Galerkin method of
Di Pietro (2012) [5] and provide an analytical expression for the conservative flux. The
relation with the SUSHI method of Eymard et al. (2010) [10] and with discontinuous
Galerkin methods is also explored. The theoretical results are assessed on a numerical
example using standard as well as general polygonal grids.
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r é s u m é

Dans cette note, on étudie la conservativité de la méthode de Galerkine centrée aux mailles
de Di Pietro (2012) [5] et on fournit une expression analytique pour le flux numérique.
Le lien avec la méthode SUSHI de Eymard et al. (2010) [10] et avec les méthodes de
Galerkine discontinues est aussi détaillé. Les résultats théoriques sont validés à la fois sur
des maillages standard et polygonaux.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Cell-centered Galerkin (ccG) methods have been recently introduced in [4,5], combining ideas from the SUSHI method
of Eymard, Gallouët, and Herbin [10], and discontinuous Galerkin methods, cf., e.g., [6]. A complete convergence analysis
for a pure diffusion problem has been carried out in [5] using finite element techniques. The goal of this work is to revisit
ccG methods in the spirit of finite volume methods and show that they enjoy a local conservation property analogous to
the SUSHI method provided (i) interface unknowns are kept rather than eliminated by the local procedure described in [5,
Section 2.3]; (ii) only the lowest-order part of the jumps is penalized and cell unknowns are used in the right-hand side.
Both of these modifications can be interpreted as using reduced quadratures. As is the case for the SUSHI method, we
show that face unknowns can be interpreted as the Lagrange multipliers of the flux continuity constraint. For the sake of
simplicity, the discussion is based on the homogeneous Poisson problem,

−�u = f in Ω, (1a)

u = 0 on ∂Ω, (1b)

where Ω ∈ R
d , d � 2, denotes an open bounded connected polygonal or polyhedral domain and f ∈ L2(Ω). The arguments

below can be easily extended to anisotropic heterogeneous problems with more general boundary conditions.
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Let Th = {T } denote a family of disjoint open polygonal or polyhedral elements such that
⋃

T ∈Th
T = Ω . The planar

faces of the elements in Th that lie on the boundary of Ω are collected in the set Fb
h , while we denote by F i

h the set
of interfaces, i.e., connected portions of planar element faces F such that there exist T1, T2 ∈ Th with F ⊂ ∂T1 ∩ ∂T2.
Mesh faces are collected in the set Fh := F i

h ∪ Fb
h and, for all T ∈ Th , we let FT := {F ∈ Fh | F ⊂ ∂T }. We also define

N∂ := maxT ∈Th card(FT ). For all F ∈ Fh , we define the set TF := {T ∈ Th | F ⊂ ∂T }. By definition, card(TF ) = 2 if F ∈ F i
h

while card(TF ) = 1 if F ∈ Fb
h . For all F ∈ F i

h we choose an arbitrary but fixed orientation of the unit normal vector nF ,
while, for all F ∈Fb

h , nF is taken outward to Ω . For all T ∈ Th and all F ∈FT we denote by nT ,F the unit normal vector to
F outward to T . Finally, for all F ∈Fh , we let xF := ∫

F x/|F |. The mesh Th is assumed to satisfy the regularity requirements
of [5, Section 2.1], which are not detailed here for the sake of conciseness. For the purposes of the present work it suffices
to recall that this assumption implies the existence of a family of cell centers (xT )T ∈Th such that every cell T ∈ Th is
star-shaped with respect to xT and, for all F ∈FT , the F -based pyramid of apex xT is non-degenerated.

In their hybrid versions, both the SUSHI and the ccG methods are based on cell and face unknowns collected in the
vector space of degrees of freedom (DOFs) Vh := R

Th × R
Fh . To identify the components of a generic DOF vector vh ∈ Vh

we note vh = ((v T )T ∈Th , (v F )F∈Fh ). The homogeneous Dirichlet condition (1b) is strongly enforced by defining the subspace
Vh0 := {vh ∈ Vh | v F = 0, ∀F ∈Fb

h }. Following [10, Section 2.4], the SUSHI bilinear form can be expressed as follows:

∀wh,vh ∈ Vh0, asushi
h (wh,vh) =

∑
T ∈Th

∑
F∈FT

|F |Φsushi
T ,F (wh)(vT − v F ). (2)

We refer to the cited work for an explicit expression for Φsushi
T ,F depending on (local) geometric quantities and on the

diffusion field when it is does not coincide with the unit tensor. Consider the discrete problem:

Find uh ∈ Vh0 such that asushi
h (uh,vh) =

∑
T ∈Th

|T |〈 f 〉T vT for all vh ∈ Vh0, (3)

with 〈 f 〉T := ∫
T f /|T |. Setting v F = 1 for F ∈ F i

h with F ⊂ ∂T1 ∩ ∂T2 and v T = 0 for all T ∈ Th in (3) one can infer the
following flux continuity relation:

Φsushi
T1,F (uh) = −Φsushi

T2,F (uh). (4)

In addition, for all T ∈ Th , taking v T ′ = δT T ′ for T ′ ∈ Th and v F = 0 for all F ∈Fh , there holds:

∀T ∈ Th,
∑

F∈FT

|F |Φsushi
T ,F (uh) = |T |〈 f 〉T . (5)

We emphasize that a key point to obtain (4) is that only cell unknowns appear in the right-hand side of (3). The goal of this
work is precisely to show that results analogous to (3), (4), and (5) hold for the hybrid version of the ccG method of [5] and
variants thereof. In proving these properties, we relate the conservative flux for the ccG method with the numerical flux of
the corresponding dG formulation based on full piecewise polynomial spaces. We show, in particular, that the two numerical
fluxes differ by an asymptotically consistent perturbation expressed in terms of discrete gradients and jump liftings.

2. Local conservation

The ccG space We briefly recall the construction of the ccG space. For all T ∈ Th we consider the following gradient recon-
struction inspired by Green’s formula:

G T (vh) := 1

|T |
∑

F∈FT

|F |v F nT ,F = 1

|T |
∑

F∈FT

|F |(v F − vT )nT ,F . (6)

For an integer k � 0 we let P
k
d(Th) := {vh ∈ L2(Ω) | vh |T ∈ P

k
d(T ), ∀T ∈ Th} with P

k
d(T ) spanned by the restriction to T of

polynomial functions of degree � k. We also need the following average and jump trace operators defined for all F ∈ F i
h

such that F ⊂ ∂T1 ∩ ∂T2 and nF points out of T1:

{ϕ} := 1

2
(ϕ|T1 + ϕ|T2), �ϕ� := ϕ|T1 − ϕ|T2 .

On boundary faces F ∈Fb
h we conventionally set {ϕ} = �ϕ� = ϕ . Let Rh :Vh → P

1
d(Th) be such that

∀vh ∈ Vh, Rh(vh)|T (x) = vT + G T (vh) · (x − xT ) ∀x ∈ T . (7)

The ccG space Vh is defined as the image of the DOF space Vh0 through Rh , i.e., we set Vh := Rh(Vh0).
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IIP-ccG method It is instructive to first consider the following bilinear form on Vh × Vh inspired by the IIP-dG method of
Dawson, Sun and Wheeler [3]:

aiip
h (uh, vh) :=

∫

Ω

∇huh · ∇h vh +
∑
T ∈Th

∑
F∈FT

∫

F

φT ,F (uh)〈vh |T 〉F , (8)

where, for all ϕ regular enough, 〈ϕ〉F := ∫
F ϕ/|F | and, for all vh ∈ Vh ,

φT ,F (vh) := −{∇h vh} · nT ,F + η

hF

〈
�vh �

〉
F εT ,F , h−1

F :=
∑

T ∈TF

|F |
card(TF )2|T | , εT ,F := nT ,F · nF . (9)

Using the above expression for the linear face dimension hF , the user-dependent parameter η for the IIP bilinear form (8)
(resp. SIP bilinear form (17)) should be taken strictly larger than N∂/2 (resp. N∂ ) to ensure stability; cf. the discussion in [8,
Section 3.2.2]. Observe that φT ,F (vh) is constant over F since we are only penalizing the lowest-order part of the jumps as
in [2]. Moreover, by definition there holds:

φT1,F (vh) = −φT2,F (vh). (10)

The IIP-ccG method reads:

Find uh ∈ Vh such that aiip
h (uh, vh) =

∫

Ω

f vh for all vh ∈ Vh. (11)

Letting k � 1 and replacing Vh by P
k
d(Th) in (11), we obtain the IIP-dG method for which there holds, for all T ∈ Th ,∑

F∈FT
φT ,F (uh) = 〈 f 〉T . This local conservation property is proved taking as a test function vh = χT with χT characteristic

function of T and using (10); see [6, Section 5.3.1.1] for the details. Unfortunately, this argument breaks down for the IIP-
ccG method (11) since, in general, χT /∈ Vh . We will show, however, that the bilinear form aiip

h on Vh × Vh admits a flux

formulation analogous to (2) with a numerical flux Φ
iip
T ,F , which is a perturbation of (9). Provided the right-hand side is

approximated as in (3), this allows us to prove a conservation property analogous to (5). We start by observing that, for all
T ∈ Th , all F ∈FT , and all vh = Rh(vh) ∈ Vh , (7) yields:

〈vh |T 〉F = vh(xF ) = vT + G T (vh) · (xF − xT ).

Plugging this expression into the second term in the right-hand side of (8), subtracting the quantity
∑

T ∈Th

∑
F∈FT

|F |×
φT ,F (uh)v F = 0 (this equality is a consequence of (10)), it is inferred:

∑
F∈Fh

∑
T ∈TF

|F |φT ,F (uh)〈vh |T 〉F =
∑

T ∈Th

∑
F∈FT

|F |φT ,F (uh)(vT − v F ) −
∑

T ∈Th

|T |GT (uh) · G T (vh), (12)

where, for all vh = Rh(vh) ∈ Vh , we have introduced the following flux-based gradient reconstruction:

GT (vh) :=
∑

F∈FT

|F |
|T |φT ,F (vh)(xT − xF ). (13)

It is worth noting that formula (13) has a strong analogy with the gradient reconstruction used by Eymard and Droniou [9];
cf. also [1, Eq. (2.15)]. Plugging (12) into (8), letting �

iip
T (uh) := GT (uh) − G T (uh), and replacing G T (vh) by its definition (6)

in the first term, we obtain:

aiip
h (uh, vh) = −

∑
T ∈Th

|T |�iip
T (uh) · G T (vh) +

∑
T ∈Th

∑
F∈FT

|F |φT ,F (uh)(vT − v F )

=
∑

T ∈Th

∑
F∈FT

|F |�iip
T (uh) · nT ,F (vT − v F ) +

∑
T ∈Th

∑
F∈FT

|F |φT ,F (uh)(vT − v F )

=
∑

T ∈Th

∑
F∈FT

|F |Φ iip
T ,F (uh)(vT − v F ),

where, for all vh = Rh(vh) ∈ Vh ,

Φ
iip
T ,F (vh) := φT ,F (vh) + �

iip
T (vh) · nT ,F . (14)

It is thus clear that the numerical flux for the IIP-ccG method is equal to the dG flux (9) plus a perturbation proportional to
the difference between the gradient reconstruction (6) based on face unknowns and the gradient reconstruction (13) based
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Fig. 1. Convergence of the flux perturbation. The triangular and Kershaw mesh families correspond to the mesh families 1 and 4.1 of the FVCA5 bench-
mark [11] respectively, while the hexagonal-dominant mesh family coincides with the one proposed in [7].

on dG fluxes, both of which are consistent. Consider now the following variation of (11), where the sole difference lies in
the approximation of the right-hand side:

Find uh = Rh(uh) ∈ Vh such that aiip
h (uh, vh) =

∑
T ∈Th

|T |〈 f 〉T vT for all vh = Rh(vh) ∈ Vh. (15)

Setting v F = 1 for F ∈F i
h with F ⊂ ∂T1 ∩ ∂T2 and v T = 0 for all T ∈ Th in (15) it is inferred:

Φ
iip
T1,F (uh) = −Φ

iip
T2,F (uh), (16)

which shows that the flux defined by (14) is continuous. Moreover, a conservation property analogous to (5) can be proved
by a similar argument.

In the left panel of Fig. 1 we show a numerical example where the convergence of the perturbation norm N iip
� :=

(
∑

T ∈Th
‖�iip

T (uh)‖2
L2(T )d )

1/2 is numerically evaluated on three successively refined mesh families. For every mesh type and

refinement, property (16) is verified up to machine precision.

SIP-ccG method The bilinear form asip
h corresponding to the SIP-ccG method of [5] contains an additional symmetry term,

namely:

asip
h (uh, vh) := aiip

h (uh, vh) −
∑

F∈Fh

∫

F

�uh �{∇h vh} · nF . (17)

For all vh = Rh(vh) ∈ Vh , the symmetry term can be rewritten as follows:

−
∑

F∈Fh

∫

F

�uh �{∇h vh} · nF = −
∑

T ∈Th

|T | · LT (uh)G T (vh), LT (uh) :=
∑

F∈FT

1

hT ,F
〈�uh �〉F nF ,

where hT ,F := |T | card(TF )
|F | . The operator LT is analogous to the jump lifting defined in [8, Section 3.2.2]. Proceeding as for

the IIP-ccG method, it is inferred:

asip
h (uh, vh) =

∑
T ∈Th

∑
F∈FT

|F |Φsip
T ,F (uh)(vT − v F ),

where, for all vh = Rh(vh) ∈ Vh ,

Φ
sip
T ,F (vh) := φT ,F (vh) + �

sip
T (vh) · nT ,F , �

sip
T (vh) := �

iip
T (vh) + LT (vh).

The numerical convergence of the perturbation norm N sip
� defined by replacing �

iip
T by �

sip
T in the expression of N iip

� is

shown in the right panel of Fig. 1. Also in this case, the flux continuity property Φ
sip
T1,F (uh) = −Φ

sip
T2,F (uh) for all F ∈F i

h such
that F ⊂ ∂T1 ∩ ∂T2 is verified to machine precision.
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