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In this note, based on Hamilton’s surface entropy formula, we construct an entropy formula
of Perelman’s type for the Ricci flow on a closed surface with positive curvature. Similar to
Perelman’s W entropy, the critical point of our entropy is the gradient shrinking soliton;
however, there is no conjugate heat equation involved. This shows a close relation between
Hamilton’s entropy and Perelman’s W entropy on closed surfaces.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans cette note, à partir de la formule de Hamilton pour l’entropie des surfaces, nous
construisons une formule d’entropie de type Perelman pour le flot de Ricci sur une surface
fermée à courbure positive. De même que pour l’entropie W de Perelman, le point critique
de notre entropie est le soliton gradient décroissant, bien qu’il n’y ait pas ici d’équation
de la chaleur qui soit mise en jeu. Ceci démontre une relation étroite entre l’entropie de
Hamilton et l’entropie W de Perelman sur les surfaces fermées.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Assume that M is a compact surface endowed with a 1-parameter family of Riemannian metrics g(t). By the Gauss–
Bonnet formula, we know that

∫
M R dμ ≡ 4πχ(M), where dμ is the area form with respect to g(t). Thus if (M, g(t))

has positive curvature, which means that M is diffeomorphic to S2 or RP 2, then R dμ/(4πχ(M)) can be regarded as a
probability measure, and Hamilton’s surface entropy [5] is defined by

N
(

g(t)
) =

∫
M

R log R dμ. (1.1)

Hamilton [5] showed that along the normalized Ricci flow, N (g(t)) is non-increasing, and later Chow gave an alternative
proof in [1]. One can also see [2,3] for this classical result.
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We focus on the un-normalized Ricci flow

∂

∂t
g = −R g, t ∈ (α, T ). (1.2)

When α = −∞ the solution is called ancient solution.
Besides Hamilton’s surface entropy (1.1), there is Perelman’s W entropy [7] defined by

W(g, u, τ ) �
∫
M

(
τ
(|∇ log u|2 + R

) − log
(
(4πτ)n/2u

) − n
)
u dμ (1.3)

restricted to u satisfying
∫

M u dμ = 1 and τ > 0. When g evolves along the Ricci flow (1.2), u satisfies the conjugate heat
equation:

∂u

∂t
= −�u + Ru (1.4)

and τ = T − t , Perelman shows that:

d

dt
W(g, u, τ ) =

∫
M

2τ

∣∣∣∣Rc−∇∇ log u − 1

2τ
g

∣∣∣∣
2

u dμ. (1.5)

We are curious about the relation between Hamilton’s surface entropy (1.1) and Perelman’s W entropy (1.3). The first
comment was made by Perelman. In [7, 5.3], he writes: “An entropy formula for the Ricci flow in dimension two was found
by Chow; there seems to be no relation between his formula and ours.”

Then in [6, Section 5], Ni asked the following question: “Is there any connection between Perelman’s entropy formula
and Hamilton’s entropy formula at all?” And in [6, Addenda, Section 2], Ni constructed a dual entropy relating Perelman’s
entropy and Hamilton’s surface entropy. Ni’s entropy is called “dual” because its critical point is an expander, while the
critical point of Perelman’s entropy is a shrinker.

In this short note, based on Hamilton’s surface entropy, we define a new entropy formula whose critical point is exactly
the shrinking gradient soliton. This entropy formula shows a close relation between Perelman’s entropy and Hamilton’s
surface entropy.

We now introduce the following definition.

Definition 1.1. Suppose (M, g(t)) is a compact surface with positive curvature. We define an entropy formula of (M, g(t))
by

E
(

g(t)
)
�

∫
M

(
τ
(

R − |∇ log R|2) − log R − logτ
)

R dμ (1.6)

where τ = T − t .

On the sphere S2 with canonical Ricci flow g(t) = 2τ gcan where gcan is the standard round metric of radius 1, we have
R = 1/τ and, moreover, E(g(t)) = 8π .

We have:

Theorem 1.2. Assume (M, g(t)) is a compact 2-dimensional solution to the Ricci flow (1.2) with positive curvature, then the entropy
E satisfies:

d

dt
E
(

g(t)
) =

∫
M

2τ

∣∣∣∣∇∇ log R + R

2
g − 1

2τ
g

∣∣∣∣
2

R dμ. (1.7)

2. Calculations

This section is devoted to prove (1.7). We first prove that Hamilton’s surface entropy N (g(t)) is convex in time t along
the un-normalized Ricci flow (1.2). This result should have been known to experts. Since we have not been able to find it
explicitly in literature we present the calculations.

Lemma 2.1. Assume (M, g(t)) is a compact 2-dimensional solution to the Ricci flow (1.2) with positive curvature, then the first two
derivatives of the surface entropy N (g(t)) are given by
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d

dt
N

(
g(t)

) =
∫
M

(� log R + R)R dμ =
∫
M

(
R − |∇ log R|2)R dμ (2.8)

and

d2

dt2
N

(
g(t)

) =
∫
M

2

∣∣∣∣∇∇ log R + R

2
g

∣∣∣∣
2

R dμ. (2.9)

Proof. The proof is a straightforward calculation. Notice that along the Ricci flow, one has

∂

∂t
R = �R + R2,

∂

∂t
dμ = −R dμ,

∂

∂t
� = R�.

We calculate:

d

dt
N

(
g(t)

) =
∫
M

(
�R + R2) log R + (

�R + R2) − R2 log R dμ

=
∫
M

�R log R + R2 dμ

and

d2

dt2
N

(
g(t)

) =
∫
M

(
∂�

∂t
R

)
log R + �

(
∂ R

∂t

)
log R + �R

(
1

R

∂ R

∂t

)
+ 2R

∂ R

∂t
− R

(
�R log R + R2)dμ

=
∫
M

�
(
�R + R2) log R + (�R)2

R
+ 3R�R + R3 dμ.

Now using integration by parts, we have

d2

dt2
N

(
g(t)

) =
∫
M

(
�R + R2)(�R

R
− |∇R|2

R2

)
+ (�R)2

R
+ 3R�R + R3 dμ

=
∫
M

2�R · �R

R
− �R · |∇ log R|2 + 5R�R + R3 dμ

=
∫
M

2�R · � log R + �R · |∇ log R|2 + 5R�R + R3 dμ

=
∫
M

−2〈∇R,∇� log R〉 + R�|∇ log R|2 + 5R�R + R3 dμ.

By the Bochner formula

�|∇ log R|2 = 2|∇∇ log R|2 + R|∇ log R|2 + 2〈∇� log R,∇ log R〉
we have

d2

dt2
N

(
g(t)

) =
∫
M

2R|∇∇ log R|2 + R2|∇ log R|2 + 5R�R + R3 dμ

=
∫
M

2R|∇∇ log R|2 + 2R�R − 2|∇R|2 + R3 dμ

=
∫
M

2R

(
|∇∇ log R|2 + R� log R + R2

2

)
dμ

=
∫

2

∣∣∣∣∇∇ log R + R

2
g

∣∣∣∣
2

R dμ. �

M
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Now we are ready to prove our main theorem.

Proof of Theorem 1.2. By the same trick as in [4], we rewrite Eq. (2.9) purposely to fit the shrinking soliton equation.

d2

dt2
N

(
g(t)

) =
∫
M

2R

∣∣∣∣∇∇ log R + R

2
g

∣∣∣∣
2

dμ

=
∫
M

2R

∣∣∣∣∇∇ log R + R

2
g − 1

2τ
g

∣∣∣∣
2

+ 2

τ
R(� log R + R) − R

τ 2
dμ

=
∫
M

2R

∣∣∣∣∇∇ log R + R

2
g − 1

2τ
g

∣∣∣∣
2

dμ + 2

τ
N ′(g(t)

) − 4πχ(M)

τ 2
.

Hence we have
∫
M

2R

∣∣∣∣∇∇ log R + R

2
g − 1

2τ
g

∣∣∣∣
2

dμ = N ′′(g(t)
) − 2

τ
N ′(g(t)

) + 4πχ(M)

τ 2

= 1

τ

d

dt

(
τN ′ −N − 4πχ(M) logτ

)
.

The above calculations suggest to define E(g(t)) to be τN ′ −N − 4πχ(M) logτ namely by Eq. (1.6), and then we have

d

dt
E
(

g(t)
) =

∫
M

2τ

∣∣∣∣∇∇ log R + R

2
g − 1

2τ
g

∣∣∣∣
2

R dμ,

and this proves Theorem 1.2. �
Remark 2.2. We note Perelman’s formula (1.5) holds as long as u is a positive solution to the conjugate heat equation (1.4).
If we do calculations for all positive solution to

∂

∂t
u = �u + Ru (2.10)

we get(
∂

∂t
− � − R

)
(u� log u + uR) = 2u|∇∇ log u + Rc |2 + u2�

(
R

u

)
. (2.11)

Thus, only when u = c R we can get an entropy formula of Perelman’s type.
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