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This note provides a short proof of a theorem of Kisin on crystalline representations.
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r é s u m é

Dans cette note, on donne une preuve courte d’un théorème de Kisin sur les représenta-
tions cristallines.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

Let K be a p-adic field, i.e., a complete discretely-valued field of characteristic 0 with perfect residue field of characteristic
p > 0, and K̄ be an algebraic closure of K . We fix a uniformizer π ∈ K . Let Ξ = Ξπ be the corresponding Kummer Zp(1)-
torsor; its elements are sequences ξ = (ξn)n�0 of elements in K̄ such that ξ

p
n+1 = ξn , ξ0 = π . Pick one ξ , and set Kξ =

⋃
K (ξn). Consider the Galois groups G := Gal(K̄/K ), Gξ := Gal(K̄/Kξ ); let Rep(G), Rep(Gξ ) be the categories of their finite-

dimensional Qp-representations.
The next result was conjectured by Breuil [1] and proved by Kisin [4, 0.2]; the proof in [4] is based on the theory of Kisin

modules. This note provides an alternative argument that uses only basic properties of Fontaine’s rings; its key ingredient
(namely, (i) of the lemma below) is the same as in Grothendieck’s proof of the monodromy theorem.

Theorem. The restriction functor Rep(G) → Rep(Gξ ) is fully faithful on the subcategory of crystalline representations.

Proof. The Galois group G acts on Ξ , and Gξ is the stabilizer of ξ . The action is transitive, i.e., G/Gξ
∼→ Ξ , since poly-

nomials t pn − π are irreducible. Let R be the ring of continuous Qp-valued functions on Ξ . Let Rst ⊂ Rφ be the subrings
of polynomial, resp. locally polynomial, functions (this makes sense since Ξ is Zp(1)-torsor). Since G acts on Ξ by affine
transformations, its action on R preserves the subrings.

Lemma.

(i) Rφ is the union of all finite-dimensional G-submodules of R.
(ii) Rst is the union of all semi-stable G-submodules of Rφ .

(iii) Qp is the only nontrivial crystalline G-submodule of Rst .
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Assuming the lemma, let us prove the theorem. For V ∈ Rep(Gξ ) we denote by I(V ) the induced G-module. Thus I(V )

is the space of all continuous maps f : G → V such that f (hg) = hf (g) for h ∈ Gξ , the action of G is g( f )(g′) = f (g′ g). For

U ∈ Rep(G) we have the Frobenius reciprocity HomGξ (U , V )
∼→ HomG(U , I(V )) that identifies α : U → V with α̃ : U → I(V ),

α̃(u)(g) = α(gu), α(u) = α̃(u)(1). For V ∈ Rep(G) the image of idV ∈ HomGξ (V , V ) is a G-morphism V → I(V ) that yields

an identification of G-equivariant R-modules V ⊗ R
∼→ I(V ).

So for V 1, V 2 ∈ Rep(G) one has identifications HomGξ (V 1, V 2) = HomG(V 1, I(V 2)) = HomG(V 1, V 2 ⊗ R) = HomG(V 1 ⊗
V ∗

2 , R) = HomG(V 1 ⊗ V ∗
2 , Rφ), the last equality comes from (i). If both V i are crystalline, then this equals HomG(V 1 ⊗

V ∗
2 ,Qp) = HomG(V 1, V 2) by (ii), (iii). Thus HomGξ (V 1, V 2) = HomG(V 1, V 2). �

Proof of Lemma. Let P be the group of all affine automorphisms of Zp(1)-torsor Ξ ; it is an extension of Z×
p by Zp(1),

the choice of ξ gives a splitting. Let η : G → P be the action of G on Ξ ; its composition with P � Z×
p is the cyclotomic

character χ .
Consider the filtration Rst n on Rst by the degree of the polynomial. Then G acts on grn Rst by χ−n , i.e., grn Rst is

isomorphic to Qp(−n).
There is a canonical morphism ε : Rst → Bst of Qp -algebras defined as follows. For ξ ∈ Ξ let lξ : Ξ → Zp(1) be the

identification of torsors such that lξ (ξ) = 0. If τ is a generator of Zp(1), then τ−1lξ ∈ Rst is a linear polynomial function,
i.e., a free generator of Rst. We define ε by formula ε(τ−1lξ ) = −τ−1λ(ξ). Here in the r.h.s. we view τ as an invertible
element of Bcrys via the embedding Zp(1) ↪→ Bcrys from [2, 2.3.4], and λ(ξ) ∈ Bst is as in [2, 3.1.4]. It follows from the
definitions in [2, 3.1] that ε does not depend on the auxiliary choice of ξ . It evidently commutes with the Galois action.
Since log(ξ) is a free generator of Bst over Bcrys, we see that ε is injective and Rst n for n � 1 are non-crystalline semi-stable
G-modules.

Choose v and log from [3, 5.1.2] as v(π) = 1, log(π) = 0. As in [3, 5.2], this yields the fully faithful tensor functor
Dst : Rep(G)st → MFK (ϕ, N).

Consider the polynomial algebra K0[t]. We equip it with Frobenius semi-linear automorphism ϕ , ϕ(t) := pt , the K0-
derivation N := ∂t , and the Hodge filtration F i := the K -span of t�i . The subspaces of polynomials of degree � n are filtered
(ϕ, N)-modules, so K0[t] is a ring ind-object of MFK (ϕ, N).

There is a canonical isomorphism K0[t] ∼→ Dst(Rst) which identifies t with (τ−1lξ )⊗τ +1⊗λ(ξ) ∈ (Rst ⊗Bst)
G = Dst(Rst).

Thus each Dst(Rst n) is a single Jordan block for the action of N , so every finite-dimensional G-submodule of Rst equals one
of Rst n ’s, which implies (iii).

Notice that Rφ = R0 ⊗ Rst, where R0 is the subring of locally constant functions. Since G acts transitively on Ξ , one has
RG

0 =Qp and all finite-dimensional G-modules that occur in R0 are generated by Gξ -fixed vectors. These representations are
Artinian, hence semisimple, so we have the decomposition R0 =Qp ⊕ R ′

0. Since the map Gξ → Gal(K un/K ), where K un ⊂ K̄
is the maximal unramified extension of K , is surjective (for K un ∩ Kξ = K ), every G-module in R ′

0 is ramified. Thus every
irreducible subquotient of R ′

0 ⊗ Rst is not semi-stable, and we get (ii).
It remains to prove (i). We first show that η(G) is an open subgroup of P . Since χ(G) is an open subgroup of Z×

p , it
suffices to check that η(G) ∩ Zp(1) is open in Zp(1). Since every closed nontrivial subgroup of Zp(1) is open, we need to

check that η(G) ∩ Zp(1) �= {0}. If not, then η(G)
∼→ χ(G) is commutative, so G acts on R through an abelian quotient. This

implies, since grn Rst �Qp(−n) are pairwise non-isomorphic G-modules, that filtration Rst n splits, which is not true, q.e.d.
Let τ be a generator of Zp(1) ⊂ P ; then Rφ is the union of all finite-dimensional Zp(1)-submodules of R on which

all eigenvalues of τ are roots of 1. Since η(G) has finite index in P , it suffices to show that every finite-dimensional P -
submodule V of R has this property. This follows since for g ∈ P one has gτ g−1 = τm , where m is the image of g in Z×

p ,
and there are only finitely many eigenvalues of τ on V . �
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