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We establish the existence of solvable Lie groups of dimension 4 and left-invariant
Riemannian metrics with zero Bach tensor which are neither conformally Einstein nor half
conformally flat.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Nous montrons l’existence de groupes de Lie résolubles de dimension 4 et de métriques
riemanniennes invariantes à gauche, dont le tenseur de Bach est nul et qui ne sont ni
conformément Einstein, ni semi-conformément plates.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let (M, g) be a 4-dimensional Riemannian manifold, let ∇ denote its Levi-Civita connection, R its Riemann tensor and
W its Weyl tensor. The latter depends only on the conformal class [g] of the metric g and decomposes as W = W+ + W− .
Another conformal invariant, the Bach tensor B , is the irreducible component of ∇∇R that, if M is compact, corresponds to
the gradient of the Lagrangian:

g �→
∫
M

∥∥W [g]∥∥2
dυg,

in which one may, for topological reasons, replace W by W+ or W− . The tensor B can be regarded as trace-free symmetric
bilinear form, and vanishes if M is self-dual (W− = 0) or anti-self-dual (W+ = 0), in other words if M is half conformally
flat. It also vanishes whenever [g] has an Einstein representative, and this aspect was studied by Derdziński [7] (see also
[2,5]). Metrics with zero Bach tensor therefore form a natural class in which to generalize results on Einstein metrics and
curvature flow [1,16,6].

There are few known examples of ‘non-trivial’ Bach-flat metrics, meaning ones with zero Bach tensor satisfying neither
the Weyl nor the Einstein condition above. A construction is outlined by Schmidt [15] and an explicit Lorentzian one is
given by Nurowski and Plebański [14]. In the light of the classification of Einstein, hyperhermitian and self-dual metrics
on 4-dimensional Lie groups by Jensen [9] and others [4,3,8], it is natural to ask whether there exists a Lie group with a
non-trivial left-invariant Bach-flat metric. This note answers the question by providing two examples. The Lie groups are
not unimodular and (predictably) the metrics do not pass to compact quotients. Nonetheless, they have a privileged status
in the study of the curvature of left-invariant metrics in the spirit of Milnor’s paper [13].
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2. A family of metric Lie algebras

Consider the Lie algebra gα,β defined by a basis (ei) of R4 with non-zero brackets

[e2, e1] = αe2, [e3, e1] = βe3, [e4, e1] = (α + β)e4, [e3, e2] = e4,

where α and β are non-zero real numbers. This gives a family of solvable, non-nilpotent Lie algebras, which are unimodular
if and only if α + β = 0. If (ei) is the dual basis of (ei), then one uses the formula dei(e j, ek) = −ei([e j, ek]) to encode the
structure constants into the differential system⎧⎪⎪⎪⎨

⎪⎪⎪⎩
de1 = 0,

de2 = αe1 ∧ e2,

de3 = βe1 ∧ e3,

de4 = (α + β)e1 ∧ e4 + e2 ∧ e3.

(1)

Once one passes to an associated Lie group, d may be regarded as the exterior derivative on the space of left-invariant
1-forms.

Proposition 2.1. If α �= β , there exist Lie algebra isomorphisms

– Pλ :gα,β → gλα,λβ for each λ �= 0;
– Q :gα,β → gβ,α .

Any isomorphism gα,β → gα′,β ′ is generated in this way, so (α′, β ′) equals either (λα,λβ) or (λβ,λα) for some λ �= 0. If α = β , then
necessarily λ = ±1.

In terms of a basis (ei) defining d, the first isomorphism is given by Pλ(e1) = e1/λ and Pλ(ei) = ei for i > 1. The second,
Q , merely swaps e2 and e3. To prove the converse, one can characterize the isomorphism class by the set of 1-forms
satisfying ω ∧ dω = 0 where ω = ∑4

i=1 aiei .
Endow gα,β with the inner product for which (ei) is (dual to) an orthonormal basis. Two Lie algebras equipped with

inner products can be called isometric if there exists a Lie algebra isomorphism between them that is an isometry. In
particular, gα,β is isometric to both gβ,α and g−α,−β .

3. Curvature calculations

Fix non-zero constants α,β , and let M be a Lie group with Lie algebra gα,β . We endow M with the left-invariant
Riemannian metric g = ∑4

i=1 eii , where eii = ei ⊗ ei . Let R denote its Riemann tensor, ρ the Ricci tensor, and τ the scalar
curvature, so that ρi j = ∑4

k=1 Rk
ikj = ∑4

k,l=1 Rkilj gkl and τ = ∑4
i=1 ρii . From the Cartan structure equations, we obtain:

ρ = −(
α2 + β2 + αβ

)
e11 −

(
α2 + αβ + 1

4

)
e22 −

(
β2 + αβ + 1

4

)
e33 −

(
(α + β)2 − 1

4

)
e44.

Observe that g is Einstein if and only if α = β = ± 1
2 ; this is the symmetric metric on the complex hyperbolic plane CH2 [9].

The Bach tensor B can be defined by:

Bij =
4∑

p=1

∇p∇ jρip − 1

2

4∑
p=1

∇p∇pρi j + 1

3
τρi j −

4∑
p=1

ρpiρpj + 1

12

[
3

4∑
r,s=1

(ρrs)
2 − τ 2

]
δi j.

It turns out to be diagonal and, since
∑4

i=1 Bii = 0, we need only record:

B11 = 1

6
− 1

6
α2 + 2

3
α3β − 2

3
α2β2 − 1

2
αβ + 2

3
αβ3 − 1

6
β2,

B22 = 5

6
α2 + 1

2
β2 + 2

3
α3β − 2αβ3 + 7

6
αβ − 2

3
α2β2 − 1

2
,

B33 = 1

2
α2 + 5

6
β2 + 7

6
αβ − 2α3β + 2

3
αβ3 − 2

3
α2β2 − 1

2
.

It is incredibly easy to resolve the system B = 0, since it yields (α2 − β2)(1 + 8αβ) = 0. If the second factor is zero then
α,β are roots of 8x4 − 7x2 + 1 = 0. Let us denote these roots by ±r1,±r2 where:
8
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r1 = 1

4

√
7 − 3

√
5 = 1

8
(3

√
2 − √

10 ), r2 = −1

4

√
7 + 3

√
5 = −1

8
(3

√
2 + √

10 ).

We obtain eight solutions which, by Proposition 2.1, fall into three essentially distinct classes:

(i) (α,β) = ±(1,1), (ii) (α,β) = ±
(

1

2
,

1

2

)
, (iii) (α,β) = ±(r1, r2) or ± (r2, r1). (2)

Solutions (i) and (ii) correspond to those of [8]. The first is hyperhermitian (so W+ = 0) and the second is the Einstein
metric on CH2, so the vanishing of their respective Bach tensor is already known. Our next goal is to show that (iii) is a
non-trivial Bach-flat metric.

We know that (iii) is not half conformally flat, by [8], and this is verified by direct computation of W± . From a result
of Listing ([11, Proposition 1]; see also [10]), a necessary condition for a 4-dimensional manifold to be locally conformally
Einstein is the existence of a non-zero vector field T = ∑4

k=1 xkek satisfying (div4 W )(X, Y , Z) = W (X, Y , Z , T ), where:

(div4 W )(eh, ek, ep) = −
4∑

i,q=1

[
ω

q
h(ei)Wqkpi + ω

q
k(ei)Whqpi + ω

q
p(ei)Whkqi + ω

q
i (ei)Whkpq

]
,

and ωi
j(ek) = ei(∇ek e j). In case (iii), we discover a contradiction by examining (div4 W )(e1, e2, e j) for j = 1 and j = 2. Thus,

Theorem 3.1. Let G be a simply-connected 4-dimensional Lie group associated with the solvable Lie algebra gr1,r2 defined by (1), and

let h = ∑4
i=1 eii . The Riemannian metric h is non-trivially Bach flat.

The Ricci tensor of h is diagonal relative to the basis (ei) with entries − 3
2 , 3

8 (−3 + √
5), − 3

8 (3 + √
5), − 3

4 . The tensor

8W± has eigenvalues 2 ± (3
√

2 − √
10), 2 ∓ (3

√
2 + √

10), −4 ± 2
√

10.

4. A 2-step solvable example

In order to undertake a more general study of possible left-invariant Bach-flat metrics, one has to work with an orthonor-
mal basis of 1-forms satisfying more complicated differential relations. The solvable case can be tackled by a case-by-case
analysis following Jensen’s work on the classification of left-invariant Einstein metrics [9]. The examples (2) lie in the class
of Lie algebras for which dimg′ = 3 and dimg′′ = 1 (where g′ = [g,g] and g′′ = [g′,g′] are the first two terms of the derived
series). Let G be a 4-dimensional Lie group with such a Lie algebra, admitting a left-invariant Bach-flat metric g . One can
show that there are three possibilities: (i) g is conformally Einstein, (ii) one of W+, W− is zero, or (iii) g is isomorphic to
gr1,r2 and g is homothetic to h.

By rotating in the plane 〈e2, e3〉 and applying an overall re-scaling, we may convert gr1,r2 into a form that simplifies the
coefficients in Q(

√
2,

√
5). Namely, de1 = 0 and

de2 = e1 ∧ e3, de3 = e1 ∧ e2 + √
5e1 ∧ e3, de4 = √

5e1 ∧ e4 + 2
√

2e2 ∧ e3.

This therefore describes a Bach-flat metric homothetic to h. In view of Theorem 3.1, it is natural to ask whether there are
solutions in other number fields. In fact, there exists a 2-step example (meaning that g′′ vanishes):

Theorem 4.1. There exists a solvable Lie algebra g defined over Q(
√

2,
√

3) with dimg′ = 2 and g′′ = {0}, whose associated Lie group
admits a non-trivial Bach-flat metric.

The metric Lie algebra in question is given by de1 = 0 = de2 and

de3 = √
2e1 ∧ e3 + e2 ∧ e3 − (1/

√
3)e2 ∧ e4, de4 = √

2e1 ∧ e4 − e2 ∧ e4 + (1/
√

3)e2 ∧ e3.

The examples of Theorems 3.1 and 4.1 are obviously very special. A study of other isomorphism classes described in [12]
leads us to predict that there are no continuous families of solvable Lie algebras admitting non-trivial left-invariant Bach-flat
metrics, in contrast to the self-dual case [8]. We can assert that there are no new solutions on unimodular Lie groups,
since the unimodular condition simplifies the equations, in particular in the nilpotent cases and in the reductive cases
gl(2,R), u(2).
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[7] A. Derziński, Self-dual Kähler manifolds and Einstein manifolds of dimension four, Compos. Math. 49 (1983) 405–433.
[8] V. De Smedt, S. Salamon, Anti-self-dual metrics on Lie groups, Contemp. Math. 308 (2002) 63–75.
[9] G.R. Jensen, Homogeneous Einstein spaces of dimension four, J. Differ. Geom. 3 (1969) 309–349.

[10] C.N. Kozameh, E.T. Newman, K.P. Tod, Conformal Einstein spaces, Gen. Relativ. Gravit. 17 (1985) 343–352.
[11] M. Listing, Conformal Einstein spaces in N-dimensions, Ann. Glob. Anal. Geom. 20 (2001) 183–197.
[12] T.B. Madsen, A. Swann, Invariant strong KT geometry on four-dimensional solvable Lie groups, J. Lie Theory 21 (2011) 55–70.
[13] J. Milnor, Curvature of left invariant metrics on Lie groups, Adv. Math. 21 (1976) 293–329.
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