

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Potential Theory/Complex Analysis

On the behaviour of power series in the absence of Hadamard–Ostrowski gaps

Sur le comportement des séries entières en l'absence de lacunes de Hadamard-Ostrowski

Thomas Kalmes^a, Jürgen Müller^a, Markus Nieß^b

^a University of Trier, FB IV, Mathematics, Universitätsring, Trier, Germany
^b TU Clausthal, Institute of Mathematics, Erzstr. 1, Clausthal-Zellerfeld, Germany

ARTICLE INFO

Article history: Received 25 February 2013 Accepted after revision 17 April 2013 Available online 15 May 2013

Presented by the Editorial Board

ABSTRACT

We show that the partial sums $(S_n f)_{n \in \mathbb{N}}$ of a power series f with radius of convergence one tend to ∞ in capacity on (arbitrarily large) compact subsets of the complement of the closed unit disk, if f does not have so-called Hadamard–Ostrowski gaps. Regarding a recent result of Gardiner, this covers a large class of functions f holomorphic in the unit disk.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Nous montrons que les sommes partielles $(S_n f)_{n \in \mathbb{N}}$ d'une série entière f de rayon de convergence 1 tendent vers ∞ en capacité sur les ensembles compacts (arbitrairement grands) du complémentaire du disque unité fermé si f ne contient pas de lacunes de Hadamard–Ostrowski. Tenant compte d'un résultat récent de Gardiner, ceci couvre une grande classe de fonctions f holomorphes sur le disque unité.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction and main result

For a power series $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ with radius of convergence one, we denote the partial sums by:

$$S_n f(z) = \sum_{\nu=0}^n a_{\nu} z^{\nu}.$$

Then $(S_n f)(z_0)$ is unbounded at each point z_0 with $|z_0| > 1$. More precisely, we have:

$$\limsup_{n \to \infty} \left| S_n f(z_0) \right|^{1/n} = |z_0| \tag{1}$$

and, for $R \ge 1$,

$$\limsup_{n \to \infty} \max_{|z|=R} \left| S_n f(z) \right|^{1/n} = R.$$
⁽²⁾

E-mail addresses: kalmesth@uni-trier.de (T. Kalmes), jmueller@uni-trier.de (J. Müller), markus.niess@tu-clausthal.de (M. Nieß).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter O 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.04.012

This does not prevent subsequences of $(S_n f)$ from being convergent, even on large subsets of the plane. Indeed, it is well known (see, e.g., the expository articles [6] and [8]) that there exist functions f holomorphic in the unit disk \mathbb{D} having the property that the sequence $(S_n f)_{n \in \mathbb{N}}$ is universal outside \mathbb{D} in the sense that for each compact set $K \subset \mathbb{C} \setminus \mathbb{D}$ with connected complement and each continuous function $h : K \to \mathbb{C}$ which is holomorphic in the interior of K, there is a subsequence of $(S_n f)_{n \in \mathbb{N}}$ tending to h uniformly on K.

It turns out that for such power series the sequence of coefficients $(a_{\nu})_{\nu \in \mathbb{N}_0}$ necessarily exhibits a strong kind of irregularity in the sense of having so-called Ostrowski gaps (see [5,10,12]). In contrast, if the sequence $(a_{\nu})_{\nu \in \mathbb{N}_0}$ behaves regularly, as for example in the case of the geometric series $f(z) = \sum_{\nu=0}^{\infty} z^{\nu}$, the partial sums $(S_n f(z))_{n \in \mathbb{N}}$ tend to be attracted by ∞ for z outside the closed unit disk. Our aim is to show that, for a reasonable class of power series, this turns out to be true in a certain sense.

In the sequel, we use the term capacity for logarithmic capacity. For unexplained notions from potential theory, see [13].

Definition 1.1. A sequence $(h_n)_{n \in \mathbb{N}}$ of Borel-measurable functions is said to *converge in capacity* to ∞ on a set $D \subset \mathbb{C}$, if for every M > 0 we have:

$$\lim_{n\to\infty} \operatorname{cap}(\{z\in D: |h_n(z)|\leq M\})=0.$$

Furthermore, if *D* is open, (h_n) is said to *converge locally in capacity* on *D* to ∞ , if the sequence converges in capacity to ∞ on every (non-polar) compact subset of *D*.

This definition is in accordance with the definition of convergence in capacity to finite limit functions, as considered, e.g., in [9]. The notion of convergence in capacity is well known in Padé approximation (see, e.g., [1, Section 6.6]). Since $cap(K) \ge \sqrt{|K|/\pi}$, where |K| denotes the area of a compact plane set *K*, convergence in capacity implies convergence in (plane Lebesgue) measure.

Definition 1.2. Let $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ have radius of convergence one. We say that f possesses *Hadamard–Ostrowski gaps* if there are sequences $(p_k)_{k \in \mathbb{N}}$ and $(q_k)_{k \in \mathbb{N}}$ in \mathbb{N} with $p_1 < q_1 \leq p_2 < q_2 \leq \cdots$, such that:

1. $\liminf_{k \to \infty} \frac{q_k}{p_k} > 1$, 2. $\limsup_{I \ni \nu \to \infty} |a_{\nu}|^{\frac{1}{\nu}} < 1$ for $I := \bigcup_{k \in \mathbb{N}} \{p_k + 1, p_k + 2, \dots, q_k - 1\}$.

Remark 1.3. A recent result of Gardiner [3, Cor. 3] states that a power series $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ which converges on \mathbb{D} and is analytically continuable to a domain $\Omega \supset \mathbb{D}$, but not to a neighbourhood of a given point $\xi \in \partial \mathbb{D}$, has no Hadamard–Ostrowski gaps, if $\mathbb{C} \setminus \Omega$ is thin at ξ . In particular, it follows that all functions holomorphic in \mathbb{D} that have an isolated singularity at some point ξ on the boundary of \mathbb{D} do not have Hadamard–Ostrowski gaps. It is easily seen that the same is true for all (repeated) antiderivatives of such functions. Thus, for a large class of functions holomorphic in \mathbb{D} , this turns out to be the case.

Our main result is the following. The proof is given in the next section.

Theorem 1.4. Let $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ be a power series with radius of convergence one and without Hadamard–Ostrowski gaps. Then $S_n f \to \infty$ locally in capacity on $\mathbb{C} \setminus \overline{\mathbb{D}}$.

Under the conditions of the theorem, $S_n f$ does not need to tend to ∞ (globally) in capacity on any open annulus {*z*: 1 < |z| < R}, where R > 1. As an example, on the semi-circular arcs:

$$B_n := \{z \in \mathbb{C}: \text{Re } z \leq 0, |z| = 1 + 1/n \}$$

the partial sums $S_n f(z) = (z^{n+1} - 1)(z - 1)^{-1}$ of the geometric series f are uniformly bounded; more precisely,

$$\max_{z\in B_n} \left| S_n f(z) \right| \leqslant 5/\sqrt{2},$$

while $cap(B_n) = (1 + 1/n) cap(B) \ge cap(B)$, where *B* is the corresponding semi-circular arc on the unit circle. This also shows that pointwise convergence to ∞ on the annulus does not imply convergence in capacity there.

Remark 1.5. Let h_n be a sequence of meromorphic functions in the plane. According to [11, Thm. 2], convergence in capacity of $h_n \rightarrow h$ on a bounded set $D \subset \mathbb{C}$ implies that there exists a subsequence $(n_k)_{k \in \mathbb{N}}$ in \mathbb{N} such that $h_{n_k} \rightarrow h$ quasi-everywhere on D, i.e.:

$$\operatorname{cap}(\{z \in D: h_{n_k}(z) \not\rightarrow h(z)\}) = 0.$$

Corollary 1.6. Let $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ be a power series with radius of convergence one and without Hadamard–Ostrowski gaps. Then every subsequence $(S_{n_k}f)_{k\in\mathbb{N}}$ of $(S_nf)_{n\in\mathbb{N}}$ contains a subsequence $(S_{n_{k_i}}f)_{j\in\mathbb{N}}$ with $1/S_{n_{k_i}}f \to 0$ quasi-everywhere on $\mathbb{C} \setminus \overline{\mathbb{D}}$.

The proof follows with a standard diagonal sequence argument from Theorem 1.4:

The annuli $K_l := \{z: 1 + 1/l \leq |z| \leq 1 + l\}$ $(l \in \mathbb{N})$ form a compact exhaustion of $\mathbb{C} \setminus \overline{\mathbb{D}}$. Let $(S_{n_k} f)_{k \in \mathbb{N}}$ be any subsequence of $(S_n f)_{n \in \mathbb{N}}$. By Theorem 1.4 and Remark 1.5, there exists a subsequence $(n_k^{(1)})_{k \in \mathbb{N}}$ of $(n_k)_{k \in \mathbb{N}}$ such that:

 $1/S_{n_{L}^{(1)}}f \rightarrow 0$ quasi-everywhere on K_1 .

Proceeding in this way, there exists a subsequence $(n_k^{(2)})_{k \in \mathbb{N}}$ of $(n_k^{(1)})_{k \in \mathbb{N}}$ such that:

 $1/S_{n^{(2)}} f \to 0$ quasi-everywhere on K_2 ,

and so on. The diagonal sequence $(n_k^{(k)})_{k \in \mathbb{N}}$ is a subsequence of $(n_k)_{k \in \mathbb{N}}$ for which $cap(\{z \in K_l: 1/S_{n_k^{(k)}}f \neq 0\}) = 0$ for all $l \in \mathbb{N}$. Since countable unions of polar sets are polar, this implies $cap(\{|z| > 1: 1/S_{n_{i}^{(k)}} f \neq 0\}) = 0$.

2. Proof of the main theorem

For r > 1 we set $\mathbb{D}_r := \{\zeta \in \mathbb{C}: |\zeta| < r\}$. The following purely potential theoretic result will play the key role for our argumentation.

Lemma 2.1. Suppose that (u_i) is a sequence of upper bounded and subharmonic functions on \mathbb{D} . If

$$\limsup_{j\to\infty}\sup_{\mathbb{D}}u_j\leqslant 0$$

and if there is a sequence (E_i) of compact subsets of \mathbb{D}_{δ} for some $\delta < 1$ with $\operatorname{cap}(E_i) \ge \alpha > 0$ and

$$\beta := \limsup_{j \to \infty} \max_{E_j} u_j < 0$$

then, for all $r \in (\delta, 1)$, a positive constant $c(\delta, r)$ exists so that:

$$\limsup_{j\to\infty}\max_{\overline{\mathbb{D}}_r}u_j\leqslant\beta\frac{c(\delta,r)}{\log(1/\alpha)}.$$

Proof. In view of the maximum principle (for subharmonic functions), we may suppose that the sets $\mathbb{C} \setminus E_i$ are connected. Let $\varepsilon > 0$ be fixed. Then there exists an integer $j_0 = j_0(\varepsilon)$ with:

$$\sup_{\mathbb{D}} u_j < \varepsilon \quad \text{and} \quad \max_{E_j} u_j < \beta + \varepsilon \quad (j \ge j_0).$$

Let $\omega_{\mathbb{D}\setminus E_i}$ denote the harmonic measure of $\mathbb{D}\setminus E_i$. According to the two-constant-theorem (see, e.g. [13, Thm. 4.3.7]) we get, for $\zeta \in \mathbb{D} \setminus E_i$ and $j \ge j_0$,

$$u_j(\zeta) \leq (\beta + \varepsilon)\omega_{\mathbb{D}\setminus E_j}(\zeta, E_j) + \varepsilon (1 - \omega_{\mathbb{D}\setminus E_j}(\zeta, E_j)) = \beta \omega_{\mathbb{D}\setminus E_j}(\zeta, E_j) + \varepsilon.$$

Moreover, from a result in [4, p. 123], we obtain the existence of a positive constant $c(\delta, r)$ with:

$$\max_{|\zeta|=r} \omega_{\mathbb{D}\setminus E_j}(\zeta, E_j) \geqslant \frac{c(\delta, r)}{\log(1/\operatorname{cap}(E_j))} \geqslant \frac{c(\delta, r)}{\log(1/\alpha)}$$

and thus the maximum principle yields:

$$\sup_{\overline{\mathbb{D}_r}} u_j \leqslant \beta \frac{c(\delta, r)}{\log(1/\alpha)} + \varepsilon \quad (j > j_0).$$

Since $\varepsilon > 0$ was arbitrary, the conclusion follows. \Box

Now, we are prepared for the Proof of Theorem 1.4:

1. We show in a first step that $S_n f(1/\zeta) \to \infty$ locally in capacity on \mathbb{D} . For this purpose, let $f(z) = \sum_{\nu=0}^{\infty} a_{\nu} z^{\nu}$ be a power series with radius of convergence one. Assume that $(\zeta \mapsto S_n f(1/\zeta))_{n \in \mathbb{N}}$ does not tend to ∞ in capacity on a non-polar compact set $E \subset \mathbb{D}$. We have to show that f has Hadamard-Ostrowski gaps.

By assumption, there exist M > 0, $\alpha > 0$, and a sequence $(n_j)_{j \in \mathbb{N}}$ in \mathbb{N} tending to infinity such that the compact sets

$$E_j := \left\{ \zeta \in E \colon \left| S_{n_j} f(1/\zeta) \right| \leq M \right\} \quad (j \in \mathbb{N})$$

all satisfy $cap(E_i) \ge \alpha$. We define:

$$u_{j}(\zeta) := \log |S_{n_{j}}f(1/\zeta)\zeta^{n_{j}}|^{1/n_{j}} = \log |\zeta| + \frac{1}{n_{j}} \log |S_{n_{j}}f(1/\zeta)| \quad (\zeta \in \mathbb{D}).$$

Then the u_j are subharmonic in \mathbb{C} (note that $S_n f(1/\zeta) \zeta^n$ is a polynomial in ζ). Moreover, (2) implies:

 $\limsup_{n\to\infty}\max_{|\zeta|=1} |S_n f(1/\zeta)|^{1/n} = 1$

and therefore (by the maximum principle):

 $\limsup_{j\to\infty}\sup_{\mathbb{D}}u_j\leqslant 0.$

Since $E_i \subset E \subset \mathbb{D}_{\delta}$ for some $\delta < 1$, we further obtain:

$$\max_{E_j} u_j \leqslant \log(\delta) + \frac{1}{n_j} \log M$$

and thus:

$$\limsup_{j \to \infty} \max_{E_j} u_j \leq \log(\delta) < 0.$$
(3)

Since $cap(E_i) \ge \alpha$, Lemma 2.1 yields:

$$\limsup_{j\to\infty}\max_{\overline{\mathbb{D}_r}}u_j\leqslant \log(\delta)\frac{c(\delta,r)}{\log(1/\alpha)}<0$$

for $\delta < r < 1$ (note that $\alpha \leq \operatorname{cap}(E_j) \leq \operatorname{cap}(\mathbb{D}_{\delta}) = \delta < 1$). If we fix such an $r \in (\delta, 1)$, for $R := 1/r \in (1, 1/\delta)$ this estimate implies:

$$\limsup_{j \to \infty} \max_{|z|=R} \left| S_{n_j} f(z) \right|^{1/n_j} < R.$$

Hence, there is $\gamma < 1$ so that:

$$\max_{|z|=R} \left| S_{n_j} f(z) \right| < (\gamma R)^{n_j}$$

for *j* sufficiently large. For every $v \leq n_j$, Cauchy's formula implies:

$$|a_{\nu}|^{\frac{1}{\nu}} = \left|\frac{1}{2\pi i} \int_{|z|=R} \frac{S_{n_j} f(z)}{z^{\nu+1}} dz\right|^{\frac{1}{\nu}} \leq \gamma^{\frac{n_j}{\nu}} \cdot R^{\frac{n_j}{\nu}-1} \leq \gamma \cdot R^{\frac{n_j}{\nu}-1}.$$

Now, if $q \in (0, 1)$ is arbitrary and $qn_j \leq \nu \leq n_j$, we obtain:

$$|a_{\nu}|^{\frac{1}{\nu}} \leqslant \gamma \cdot R^{\frac{1}{q}-1},$$

and hence

$$\limsup_{j\to\infty}\max_{qn_j\leqslant\nu\leqslant n_j}|a_{\nu}|^{\frac{1}{\nu}}\leqslant\gamma\cdot R^{\frac{1}{q}-1}.$$

Finally, we can choose q < 1 close enough to 1 so that $\gamma R^{\frac{1}{q}-1} < 1$, which gives:

$$\limsup_{j\to\infty}\max_{qn_j\leqslant\nu\leqslant n_j}|a_{\nu}|^{\frac{1}{\nu}}<1.$$

This implies that f has Hadamard–Ostrowski gaps.

2. From [13, Thm. 5.3.1], it is easily seen that convergence in capacity is preserved under bi-Lipschitz mappings. Let $K \subset \mathbb{C}$ be a compact set and $\varphi : K \to \mathbb{C}$ bi-Lipschitz. For any sequence (h_n) of Borel-measurable functions on $\varphi(K)$, we have $h_n \to \infty$ in capacity on $\varphi(K)$ if and only if $h_n \circ \varphi \to \infty$ in capacity on K. If we apply this for arbitrary compact subsets K of $\mathbb{C} \setminus \overline{\mathbb{D}}$ and $\varphi(z) = 1/z$ on K, the conclusion follows from the first part of the proof, with $h_n(\zeta) = S_n f(1/\zeta)$. \Box

3. Further remarks

1. A closer inspection of the proof of our main theorem shows that the existence of a sequence of compact subsets K_j of an annulus {*z*: $R \leq |z| \leq S$ }, where $1 < R \leq S$, with $\inf_{j \in \mathbb{N}} \operatorname{cap}(K_j) > 0$ and

$$\limsup_{j \to \infty} \max_{z \in K_j} \frac{1}{|z|} \left| S_{n_j} f(z) \right|^{1/n_j} < 1$$
(4)

implies that f has Hadamard–Ostrowski gaps (in this case, we still have:

$$\limsup_{j\to\infty} \max_{E_j} u_j < 0$$

in the estimate (3), where $E_j := 1/K_j$). In particular, (4) is satisfied if:

$$\limsup_{j\to\infty}\max_{z\in K_j} |S_{n_j}f(z)|^{1/n_j} < R.$$

With regard to (1) and (2), this means that the subsequence (S_{n_j}) has a reduced growth compared to the full sequence on the compact sets K_j .

2. Consider a power series f of radius of convergence one and being analytically continuable to a domain Ω strictly larger than \mathbb{D} . From a classical result of Ostrowski on overconvergence (see e.g. [7, Thm. 16.7.1]), it follows that the conclusion of Corollary 1.6 does no longer hold if f has Hadamard–Ostrowski gaps.

More precisely, let $\xi \in \Omega \cap \partial \mathbb{D}$. If $(p_k)_{k \in \mathbb{N}}$ and $(q_k)_{k \in \mathbb{N}}$ are as in Definition 1.2, the subsequence $(S_{p_k} f)_{k \in \mathbb{N}}$ converges uniformly on some open disk U with centre ξ (to the continuation of f). Thus, in particular, no subsequence of $(S_{p_k} f)_{k \in \mathbb{N}}$ can tend to infinity quasi-everywhere on $U \setminus \overline{\mathbb{D}}$.

In contrast, there exist f having $\partial \mathbb{D}$ as its natural boundary and having Hadamard–Ostrowski gaps so that $(S_n f)(z) \to \infty$ for all |z| > 1. A simple example is given by the gap series:

$$f(z) = \sum_{k=0}^{\infty} z^{2^k},$$

where one may choose $p_k = 2^k$ and $q_k = p_{k+1}$.

3. In [2] it was shown that, for functions f having no Hadamard–Ostrowski gaps, pointwise (finite) limit functions of $(S_n f)_{n \in \mathbb{N}}$ on sets $E \subset \mathbb{C} \setminus \overline{\mathbb{D}}$ can only exist if E is polar. This also appears now as consequence of Corollary 1.6.

4. Let H_0 denote the space of all functions holomorphic in the punctured sphere $\mathbb{C}_{\infty} \setminus \{1\}$ (where $\mathbb{C}_{\infty} := \mathbb{C} \cup \{\infty\}$) and vanishing at infinity. From the result of Gardiner mentioned in Remark 1.3, it follows that functions in $H_0 \setminus \{0\}$ do not have Hadamard–Ostrowski gaps. According to 3, finite limit functions can only exist on polar sets $E \subset \mathbb{C} \setminus \overline{\mathbb{D}}$. As is shown by the geometric series f, finite limit functions may exist on sets of positive capacity on the boundary $\partial \mathbb{D}$ of the unit disk. Indeed, if $K \subset \partial \mathbb{D} \setminus \{1\}$ is a Dirichlet set (see e.g. [8]), then a subsequence of

$$S_n f(z) = (z^{n+1} - 1)(z - 1)^{-1}$$

tends to 0 uniformly on *K*. It is known that Dirichlet sets of Hausdorff dimension 1 exist. Polar sets, however, necessarily have vanishing Hausdorff dimension.

On the other hand, from a result of Melas [9], it easily follows that for all countable sets $E \subset \mathbb{C} \setminus \mathbb{D}$, there is a residual set in H_0 (where H_0 is endowed with the topology of locally uniform convergence) consisting of functions that are universal on E in the sense that for each function $h : E \to \mathbb{C}$, a subsequence of $(S_n f)_{n \in \mathbb{N}}$ tends to h pointwise on E. Moreover, [2, Thm. 2] shows that there is a residual set of functions in H_0 so that $\{S_n f : n \in \mathbb{N}\}$ is (uniformly) dense in the space C(K) of continuous functions on K for "many" perfect sets $K \subset \mathbb{C} \setminus \mathbb{D}$. This shows in particular that, for a residual set of functions in H_0 , uncountable exceptional sets $E \subset \mathbb{C} \setminus \overline{\mathbb{D}}$ exist on which the sequence $(S_n f)_{n \in \mathbb{N}}$ turns out to be far away from tending pointwise to ∞ .

References

- [1] G.A. Baker, P. Graves-Morris, Padé Approximants, 2nd ed., Cambridge University Press, Cambridge, 1996.
- [2] P. Beise, T. Meyrath, J. Müller, Universality properties of Taylor series inside the domain of holomorphy, J. Math. Anal. Appl. 383 (2011) 234–238.
- [3] S.J. Gardiner, Existence of universal Taylor series for nonsimply connected domains, Constr. Approx. 35 (2012) 245-257.
- [4] J.B. Garnett, D.E. Marshall, Harmonic Measure, Cambridge University Press, Cambridge, 2005.
- [5] W. Gehlen, W. Luh, J. Müller, On the existence of O-universal functions, Complex Var. Theory Appl. 41 (2000) 81-90.
- [6] K.G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Am. Math. Soc. (N.S.) 36 (1999) 345-381.
- [7] E. Hille, Analytic Function Theory, Vol. II, 2nd ed., Chelsea, New York, 1987.
- [8] J.P. Kahane, Baire's category theorem and trigonometric series, J. Anal. Math. 80 (2000) 143-182.
- [9] A. Melas, Universal functions on nonsimply connected domains, Ann. Inst. Fourier (Grenoble) 51 (2001) 1539–1551.
- [10] A. Melas, V. Nestoridis, Universality of Taylor series as a generic property of holomorphic functions, Adv. Math. 157 (2001) 138–176.
- [11] B. Meyer, On convergence in capacity, Bull. Aust. Math. Soc. 14 (1976) 1-5.
- [12] J. Müller, V. Vlachou, A. Yavrian, Universal overconvergence and Ostrowski-gaps, Bull. Lond. Math. Soc. 38 (2006) 597-606.
- [13] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, 1995.