

Algebraic Geometry

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Degree and class of caustics by reflection for a generic source

Degré et classe des caustiques par réflexion pour une source générique

Alfrederic Josse, Françoise Pène¹

LMBA UMR 6205, Université de Brest, 6 avenue Victor-Le-Gorgeu, CS 93837, 29238 Brest cedex 3, France

ARTICLE INFO

Article history: Received 9 January 2013 Accepted 19 April 2013 Available online 16 May 2013

Presented by the Editorial Board

ABSTRACT

Given any irreducible algebraic (mirror) curve $C \subseteq \mathbb{P}^2 := \mathbb{P}^2(\mathbb{C})$ and any (light position) $S \in \mathbb{P}^2$, the caustic by reflection $\Sigma_S(C)$ of C from S is the Zariski closure of the envelope of the reflected lines got from the lines coming from S after reflection on C. In Josse and Pène (forthcoming [7] and preprint [8]), we established formulas for the degree and class (with multiplicity) of $\Sigma_S(C)$ for any C and any S. In this paper, we prove the birationality of the caustic map for a generic S in \mathbb{P}^2 . Moreover, we give simple formulas for the degree and class (without multiplicity) of $\Sigma_S(C)$ for any C and for a generic S in \mathbb{P}^2 .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Étant donnés une courbe algébrique irréductible $C \subseteq \mathbb{P}^2 := \mathbb{P}^2(\mathbb{C})$ (miroir) et une position $S \in \mathbb{P}^2$ (position de la source lumineuse), la caustique par réflexion $\Sigma_S(C)$ de C issue de S est l'adhérence de Zariski de l'enveloppe des droites réfléchies obtenues à partir des droites issues de S après réflexion sur C. Dans Josse et Pène (forthcoming [7] et preprint [8]), nous avons établi des formules pour le degré et la classe (avec multiplicité) de $\Sigma_S(C)$ valables pour toute courbe C et tout S. L'objet de la présente note est de prouver la birationnalité de l'application caustique (pour un S générique dans \mathbb{P}^2) et de donner des formules simples pour le degré et la classe (sans multiplicité) de $\Sigma_S(C)$ pour toute courbe C et pour un S générique dans \mathbb{P}^2 .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in the study of caustics by reflection in the projective complex plane \mathbb{P}^2 . Given an irreducible algebraic curve $\mathcal{C} = V(F) \subset \mathbb{P}^2$ of degree $d \ge 2$ and given $S = [x_0 : y_0 : z_0] \in \mathbb{P}^2$, the *caustic by reflection* $\Sigma_S(\mathcal{C})$ of \mathcal{C} from S is the Zariski closure of the envelope of the reflected lines on \mathcal{C} of the lines coming from S.

For $m \in C$, the reflected line $\mathcal{R}_{m,S,C}$ is defined as the orthogonal symmetric of the (incident) line (m S) with respect to the tangent line to C at m. In [7,8], we detail the construction of the reflected lines and we define two rational maps $\mathcal{R}_{C,S}$ and $\Phi_{F,S}$ from \mathbb{P}^2 into itself, satisfying the following property: for a generic m in C, $\mathcal{R}_{C,S}(m)$ corresponds to an equation of the reflected line $\mathcal{R}_{m,S,C}$ and this line is tangent to $\Phi_{F,S}(C)$ at $\Phi_{F,S}(m)$. Hence the caustic $\Sigma_S(C)$ is the Zariski closure of $\Phi_{F,S}(C)$ and $\Phi_{F,S}$ is called the *caustic map* of C from S. Observe that the Zariski closure of $\mathcal{R}_{C,S}(C)$ is then the dual curve of the caustic $\Sigma_S(C)$. In [7,8], we used this approach to establish precise formulas for the degree and class (both with

E-mail addresses: alfrederic.josse@univ-brest.fr (A. Josse), francoise.pene@univ-brest.fr (F. Pène).

¹ Supported by the French ANR project GEODE (ANR-10-JCJC-0108).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.04.019

multiplicity) of $\Sigma_S(\mathcal{C})$ for any \mathcal{C} and any S. The degree with multiplicity of $\Sigma_S(\mathcal{C})$ means its degree multiplied by the degree of the rational map $\Phi_{F,S}$ restricted to \mathcal{C} . The class with multiplicity of $\Sigma_S(\mathcal{C})$ means its class multiplied by the degree of the rational map $R_{\mathcal{C},S}$ restricted to \mathcal{C} . Our formulas complete the formula obtained by Chasles in [3] for the class of a caustic by reflection (for a generic \mathcal{C} and a generic S). Let us indicate that, in [1], Brocard and Lemoyne gave, without any proof, formulas for the degree and class of caustics by reflection (for a Plücker curve \mathcal{C} and for S not at infinity). It seems that their formulas come from an incorrect composition of formulas by Salmon and Cayley [10] for some characteristic invariants of pedal and evolute curves (using the representation of caustics by reflection given by Quetelet and Dandelin). This is discussed in [8]. Let us also mention the work of Catanese and Trifogli on focal loci, which generalizes evolutes to higher dimension [11,2].

The question of the birationality of the rational maps $R_{C,S}$ and $\Phi_{F,S}$ on C is not evident, even if S is not at infinity. Indeed, according to results of Quetelet and Dandelin [9,4], when S is not at infinity, the caustic $\Sigma_S(C)$ is the evolute of the S-centered homothety (with ratio 2) of the pedal of C from S (i.e. the evolute of the orthotomic of C with respect to S). But we just know that the evolute map is birational for a generic algebraic curve (see [5] by Fantechi).

In this note, we prove the birationality on C of the maps $R_{C,S}$ and $\Phi_{F,S}$ for any irreducible algebraic curve $C \subset \mathbb{P}^2$ of degree $d \ge 2$ and for a generic S in \mathbb{P}^2 . This result enables us to establish simple formulas for the degree and class of caustics by reflection valid for any irreducible algebraic curve $C \subset \mathbb{P}^2$ of degree $d \ge 2$ and for a generic S in \mathbb{P}^2 . In this study, the cyclic points I = [1 : i : 0] and J = [1 : -i : 0] play a particular role. We will also use the canonical projection $\pi : \mathbb{C}^3 \setminus \{0\} \to \mathbb{P}^2$.

2. Birationality

Theorem 2.1. Let $C = V(F) \subset \mathbb{P}^2$ be any irreducible algebraic curve of degree $d \ge 2$. For a generic $S \in \mathbb{P}^2$, the maps $R_{C,S}$ and $\Phi_{F,S}$ are birational on C.

Before going into the proof of our theorem, let us introduce some notations and recall some facts (see [7]). For any line $\mathcal{D} = V(ax + by + cz) \in \mathbb{P}^2$ such that $a^2 + b^2 \neq 0$, we define the orthogonal symmetric with respect to \mathcal{D} as the rational map $\sigma_{\mathcal{D}} : \mathbb{P}^2 \to \mathbb{P}^2$ (which is an involution) given by:

$$\sigma_{\mathcal{D}}[x:y:z] = \pi\left(\left(a^2 + b^2\right) \cdot (x, y, z) - 2(ax + by + cz) \cdot (a, b, 0)\right).$$

Let $C = V(F) \subset \mathbb{P}^2$ be an irreducible algebraic curve of degree $d \ge 2$ and let $S \in \mathbb{P}^2 \setminus \{I, J\}$ be a (light) position. We define $C_0 := C \setminus V(F_x^2 + F_y^2)$. Observe that this set corresponds to the complement in C of the cyclic apparent contour of C (the apparent contour of C from the cyclic points). We recall that the reflected line $\mathcal{R}_{m,S,C}$ at $m \in C_0 \setminus \{S\}$ is the line $(m \sigma_{\mathcal{T}_m C}(S))$, where $\mathcal{T}_m C$ is the tangent to C at m. For any $m \in C_0$, we define the normal line $\mathcal{N}_m C$ to C at m as the line containing m and $[F_x(m): F_v(m): 0]$.

For any $m \in C_0$, we consider the set K_m of points $S \in \mathbb{P}^2$ such that there exists $m' \in C_0 \setminus \{m\}$ satisfying $R_{\mathcal{C},S}(m') = R_{\mathcal{C},S}(m) \neq 0$. Observe that the set \mathcal{A} of $S \in \mathbb{P}^2$ such that $R_{\mathcal{C},S}$ is not birational on \mathcal{C} can be written $\mathcal{A} = \bigcup_{E \subset C_0: \#E < \infty} \bigcap_{m \in C_0 \setminus E} K_m$. To prove that $R_{\mathcal{C},S}$ is birational on \mathcal{C} for a generic S in \mathbb{P}^2 , we prove that \mathcal{A} is contained in a subvariety of codimension at least 1 in \mathbb{P}^2 . Our proof is based on the following lemma.

Lemma 2.2. For any $m \in C_0$, the set K_m is contained in a (possibly non-irreducible) algebraic curve \bar{K}_m of degree at most $2d^2 + 2$.

Proof. Let us consider any $m \in C_0$. Let $S \in K_m$ and $m' \in C_0 \setminus \{m\}$ satisfying $R_{\mathcal{C},S}(m') = R_{\mathcal{C},S}(m) \neq 0$. Then $(mm') = \mathcal{R}_{m,S,\mathcal{C}} = \mathcal{R}_{m',S,\mathcal{C}}$ and so S is in $\mathcal{A}_{m,m'} := \sigma_{\mathcal{T}_m\mathcal{C}}((mm')) \cap \sigma_{\mathcal{T}_{m'}\mathcal{C}}((mm'))$. Observe that, if $\sigma_{\mathcal{T}_m\mathcal{C}}((mm')) = \sigma_{\mathcal{T}_{m'}\mathcal{C}}((mm'))$, then these lines are (mm') and so (mm') is stable by $\sigma_{\mathcal{T}_m\mathcal{C}}$ and by $\sigma_{\mathcal{T}_m'\mathcal{C}}$. But $\mathcal{T}_m\mathcal{C}$ and $\mathcal{N}_m\mathcal{C}$ are the only lines containing m which are stable by $\sigma_{\mathcal{T}_m\mathcal{C}}((mm')) = \sigma_{\mathcal{T}_{m'}\mathcal{C}}((mm'))$ implies $S \in (mm') \subset \mathcal{T}_m\mathcal{C} \cup \mathcal{N}_m\mathcal{C}$. If $\sigma_{\mathcal{T}_m\mathcal{C}}((mm')) \neq \sigma_{\mathcal{T}_{m'}\mathcal{C}}((mm'))$, then S is the only point of $\mathcal{A}_{m,m'}$, so S is equal to

$$\tau_m(m') := (m \wedge \sigma_{\mathcal{T}_m \mathcal{C}}(m')) \wedge (m' \wedge \sigma_{\mathcal{T}_{m'} \mathcal{C}}(m)).$$

Notice that τ_m is a rational map with coordinates of degree 2*d*. So, due to [6, Proposition 4.4], $\tau_m(\mathcal{C})$ is contained in an algebraic curve of degree at most $\mathcal{C} \cdot \tau_m^*(H) \leq 2d^2$ (where *H* is the hyperplane class in \mathbb{P}^2). Finally, we have $K_m \subseteq \overline{K}_m := \overline{\tau_m(\mathcal{C})} \cup \mathcal{T}_m \mathcal{C} \cup \mathcal{N}_m \mathcal{C}$, which is an algebraic curve of degree at most $2d^2 + 2$. \Box

Proof of Theorem 2.1. Let us prove that $R_{C,S}$ is birational on C for a generic S in \mathbb{P}^2 . The birationality of $\Phi_{F,S}$ on C will follow. Indeed, for a generic S in \mathbb{P}^2 , the caustic $\Sigma_S(C)$ is a curve (see for example [8]). Therefore, for generic $m, m' \in C$, $\Phi_{F,S}(m) = \Phi_{F,S}(m')$ implies that $R_{C,S}(m) = R_{C,S}(m')$. With the notations of Lemma 2.2, we define $\mathcal{A}' := \bigcup_{E \subset C_0: \#_{E} < \infty} \bigcap_{m \in C_0 \setminus E} \bar{K}_m$. We prove that the set $\mathcal{F} := \{\bigcap_{m \in C_0 \setminus E} \bar{K}_m, E \subset C_0, \#_E < \infty\}$ is inductive for the inclusion. Let $(\mathcal{F}_j := \bigcap_{m \in C_0 \setminus [L_j]} \bar{K}_m)_{j \ge 1}$ be an increasing sequence of sets belonging to \mathcal{F} . Let us show that the union Z of these sets is also in \mathcal{F} . First $Z \subseteq \bigcap_{m \in C_0 \setminus [L_j]} \bar{K}_m \subseteq \bar{K}_{m_0}$ for some fixed $m_0 \in C_0 \setminus \bigcup_{i \ge 1} E_i$. Now \bar{K}_{m_0} is the union of a finite number

of irreducible algebraic curves C_1, \ldots, C_p . Let $i \in \{1, \ldots, p\}$ and let d_i be the degree of C_i . If $C_i \subseteq Z$, then there exists $N_i \ge 1$ such that $C_i \subseteq \mathcal{F}_{N_i}$. Assume now that $C_i \nsubseteq Z$. Then $(C_i \cap \mathcal{F}_j)_{j \ge 1}$ is an increasing sequence of finite sets containing at most $d_i \times (2d^2 + 2)$ points. Therefore, there exists $N_i \ge 1$ such that $(C_i \cap Z) \subseteq \mathcal{F}_{N_i}$. We conclude that $Z = \mathcal{F}_{\max(N_1,\ldots,N_p)}$ and so Z is in \mathcal{F} . So \mathcal{F} is inductive.

From the Zorn lemma, either \mathcal{F} is empty or it admits a maximal element (for the inclusion). If it is empty, then $\mathcal{A} = \mathcal{A}' = \emptyset$. If it is not empty and if $\mathcal{F}_0 := \bigcap_{m \in \mathcal{C}_0 \setminus E_0} \bar{K}_m$ (with $E_0 \subset \mathcal{C}_0$ and $\#E_0 < \infty$) is a maximal element of \mathcal{F} , then $\mathcal{A}' = \mathcal{F}_0$. Indeed, \mathcal{A}' contains \mathcal{F}_0 by definition of \mathcal{A}' . Conversely, let $S \in \mathcal{A}'$, there exists $E \subset \mathcal{C}_0$ such that $\#E < \infty$ and such that $S \in \bigcap_{m \in \mathcal{C}_0 \setminus E} \bar{K}_m$. Hence $S \in \bigcap_{m \in \mathcal{C}_0 \setminus (E \cup E_0)} \bar{K}_m$. Since we also have $\bigcap_{m \in \mathcal{C}_0 \setminus E_0} \bar{K}_m \subseteq \bigcap_{m \in \mathcal{C}_0 \setminus (E \cup E_0)} \bar{K}_m$, we conclude that $S \in \bigcap_{m \in \mathcal{C}_0 \setminus E_0} \bar{K}_m$. Therefore, in any case, \mathcal{A} is contained in an algebraic curve; this gives the *S*-genericity of the birationality of $R_{\mathcal{C},S}$ on \mathcal{C} and so the statement of Theorem 2.1. \Box

3. Light generic formulas for the degree and the class of caustics

Let $C = V(F) \subset \mathbb{P}^2$ be any irreducible algebraic curve of degree $d \ge 2$. We call *isotropic tangent* to C any tangent to C containing I or J. Before stating our formulas, let us introduce some notations.

For any $P \in \mathbb{P}^2$, we write $\mu_P(\mathcal{C})$ for the multiplicity of \mathcal{C} at P. We recall that $\mu_P(\mathcal{C}) = 1$ means that P is a non-singular point of \mathcal{C} . For any $P \in \mathcal{C}$, we write $\operatorname{Branch}_P(\mathcal{C})$ for the set of branches of \mathcal{C} at P. Let us write $\mathcal{E}_{\mathcal{C}}$ for the set of couples (P, \mathcal{B}) with $P \in \mathcal{C}$ and with $\mathcal{B} \in \operatorname{Branch}_P(\mathcal{C})$. For any $(P, \mathcal{B}) \in \mathcal{E}_{\mathcal{C}}$, we write $\mathcal{T}_P\mathcal{B}$ for the tangent line to \mathcal{B} at P and $e_{\mathcal{B}}$ for the multiplicity of \mathcal{B} . We recall that $\sum_{\mathcal{B} \in \operatorname{Branch}_P(\mathcal{C}) e_{\mathcal{B}} = \mu_P(\mathcal{C})$. For any $(P, \mathcal{B}) \in \mathcal{E}_{\mathcal{C}}$ and any algebraic curve \mathcal{C}' , we denote by $i_P(\mathcal{C}, \mathcal{C}')$ (resp. $i_P(\mathcal{B}, \mathcal{C}')$) the intersection number of \mathcal{C} (resp. \mathcal{B}) with \mathcal{C}' at P. We recall that the contact number $\Omega_P(\mathcal{C}, \mathcal{C}')$ of \mathcal{C} with \mathcal{C}' is given by $\Omega_P(\mathcal{C}, \mathcal{C}') = i_P(\mathcal{C}, \mathcal{C}') - \mu_P(\mathcal{C})\mu_P(\mathcal{C}')$. The line at infinity of \mathbb{P}^2 is written ℓ_{∞} . Combining Theorem 2.1 with the main results of [7,8], we obtain:

Proposition 3.1. Let $C = V(F) \subseteq \mathbb{P}^2$ be any irreducible algebraic curve of degree $d \ge 2$ and of class d^{\vee} . For a generic $S \in \mathbb{P}^2$, we have:

$$\deg(\Sigma_{\mathcal{S}}(\mathcal{C})) = 3d + f_0 - t_I - t_J \quad and \quad \operatorname{class}(\Sigma_{\mathcal{S}}(\mathcal{C})) = 2d^{\vee} + d - g - \mu_I(\mathcal{C}) - \mu_J(\mathcal{C}),$$

where g is the contact number of C with ℓ_{∞} , i.e. $g := \sum_{m_1 \in C \cap \ell_{\infty}} \Omega_{m_1}(C, \ell_{\infty})$, where f_0 is the number of "inflectional branches" of C not tangent to the line at infinity, i.e.

$$f_{0} := \sum_{\substack{(P,\mathcal{B})\in\mathcal{E}_{\mathcal{C}}: i_{P}(\mathcal{B},\mathcal{T}_{P}\mathcal{B}) > 2e_{\mathcal{B}}, \ \mathcal{T}_{P}\mathcal{B} \neq \ell_{\infty}}} (i_{P}(\mathcal{B},\mathcal{T}_{P}\mathcal{B}) - 2e_{\mathcal{B}})$$

and where t_P is the number of branches of C tangent at P to ℓ_{∞} : $t_P = \sum_{\mathcal{B} \in Branch_P(\mathcal{C}): \mathcal{T}_P \mathcal{B} = \ell_{\infty}} e_{\mathcal{B}}$.

Proof. According to Theorem 2.1, for a generic *S* in \mathbb{P}^2 , the degree and class (with multiplicity) of $\Sigma_S(\mathcal{C})$ are equal to its degree and class. For the degree formula, we use Theorem 20 of [7]. For the class formula, we use the main theorem of [8]. For a generic $S \in \mathbb{P}^2$ ($S \in \mathbb{P}^2 \setminus (\mathcal{C} \cup \ell_\infty)$ not contained in an isotropic tangent to \mathcal{C}), we have $f = \mu_I(\mathcal{C}) + \mu_J(\mathcal{C})$, f' = 0, g' = 0 and q' = 0 (with the notations of [8]). \Box

Acknowledgement

We thank Fabrizio Catanese for discussions having motivated the redaction of this note on source generic results for caustics by reflection.

References

- H. Brocard, T. Lemoyne, Courbes géométriques remarquables. Courbes spéciales planes et gauches. Tome I, Nouveau tirage Librairie Scientifique et Technique Albert Blanchard, Paris, 1967, viii+451 pp. (in French).
- [2] F. Catanese, C. Trifogli, Focal loci of algebraic varieties. I. Special issue in honor of Robin Hartshorne, Commun. Algebra 28 (12) (2000) 6017-6057.
- [3] M. Chasles, Détermination, par le principe des correspondances, de la classe de la développée et de la caustique par réflexion d'une courbe géométrique d'ordre m et de classe n, Nouv. Ann. Math. 2 ser. 10 (1871) 97–104, extrait C. R. séances A. S. t. LXII.
- [4] G.P. Dandelin, Notes sur les caustiques par réflexion, 1822.
- [5] B. Fantechi, The Evolute of a Plane Algebraic Curve, UTM, vol. 408, University of Trento, Italy, 1992.
- [6] W. Fulton, Intersection Theory, 2nd edition, Springer-Verlag, 1998.
- [7] A. Josse, F. Pène, On the degree of caustics by reflection, Commun. Algebra (2013), forthcoming.
- [8] A. Josse, F. Pène, On the class of caustics by reflection, preprint, arXiv:1210.6551.
- [9] L.A.J. Quetelet, Énoncés de quelques théorèmes nouveaux sur les caustiques, C. G. Q. 1 (1828) 14, 147-149.
- [10] G. Salmon, A Treatise on the Higher Plane Curves: Intended as a Sequel to a Treatise on Conic Sections, Elibron Classics, 1934.
- [11] C. Trifogli, Focal loci of algebraic hypersurfaces: a general theory, Geom. Dedic. 70 (1998) 1-26.