Algebraic Geometry

Degree and class of caustics by reflection for a generic source

Degré et classe des caustiques par réflexion pour une source générique

Alfrederic Josse, Françoise Pène ${ }^{1}$
LMBA UMR 6205, Université de Brest, 6 avenue Victor-Le-Gorgeu, CS 93837, 29238 Brest cedex 3, France

A R T I C L E I N F O

Article history:

Received 9 January 2013
Accepted 19 April 2013
Available online 16 May 2013
Presented by the Editorial Board

Abstract

Given any irreducible algebraic (mirror) curve $\mathcal{C} \subseteq \mathbb{P}^{2}:=\mathbb{P}^{2}(\mathbb{C}$) and any (light position) $S \in \mathbb{P}^{2}$, the caustic by reflection $\Sigma_{S}(\mathcal{C})$ of \mathcal{C} from \bar{S} is the Zariski closure of the envelope of the reflected lines got from the lines coming from S after reflection on \mathcal{C}. In Josse and Pène (forthcoming [7] and preprint [8]), we established formulas for the degree and class (with multiplicity) of $\Sigma_{S}(\mathcal{C})$ for any \mathcal{C} and any S. In this paper, we prove the birationality of the caustic map for a generic S in \mathbb{P}^{2}. Moreover, we give simple formulas for the degree and class (without multiplicity) of $\Sigma_{S}(\mathcal{C})$ for any \mathcal{C} and for a generic S in \mathbb{P}^{2}. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É Étant donnés une courbe algébrique irréductible $\mathcal{C} \subseteq \mathbb{P}^{2}:=\mathbb{P}^{2}(\mathbb{C})$ (miroir) et une position $S \in \mathbb{P}^{2}$ (position de la source lumineuse), la caustique par réflexion $\Sigma_{S}(\mathcal{C})$ de \mathcal{C} issue de S est l'adhérence de Zariski de l'enveloppe des droites réfléchies obtenues à partir des droites issues de S après réflexion sur \mathcal{C}. Dans Josse et Pène (forthcoming [7] et preprint [8]), nous avons établi des formules pour le degré et la classe (avec multiplicité) de $\Sigma_{S}(\mathcal{C})$ valables pour toute courbe \mathcal{C} et tout S. L'objet de la présente note est de prouver la birationnalité de l'application caustique (pour un S générique dans \mathbb{P}^{2}) et de donner des formules simples pour le degré et la classe (sans multiplicité) de $\Sigma_{S}(\mathcal{C})$ pour toute courbe \mathcal{C} et pour un S générique dans \mathbb{P}^{2}.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

We are interested in the study of caustics by reflection in the projective complex plane \mathbb{P}^{2}. Given an irreducible algebraic curve $\mathcal{C}=V(F) \subset \mathbb{P}^{2}$ of degree $d \geqslant 2$ and given $S=\left[x_{0}: y_{0}: z_{0}\right] \in \mathbb{P}^{2}$, the caustic by reflection $\Sigma_{S}(\mathcal{C})$ of \mathcal{C} from S is the Zariski closure of the envelope of the reflected lines on \mathcal{C} of the lines coming from S.

For $m \in \mathcal{C}$, the reflected line $\mathcal{R}_{m, S, \mathcal{C}}$ is defined as the orthogonal symmetric of the (incident) line ($m S$) with respect to the tangent line to \mathcal{C} at m. In [7,8], we detail the construction of the reflected lines and we define two rational maps $R_{\mathcal{C}, S}$ and $\Phi_{F, S}$ from \mathbb{P}^{2} into itself, satisfying the following property: for a generic m in $\mathcal{C}, R_{\mathcal{C}, S}(m)$ corresponds to an equation of the reflected line $\mathcal{R}_{m, S, \mathcal{C}}$ and this line is tangent to $\Phi_{F, S}(\mathcal{C})$ at $\Phi_{F, S}(m)$. Hence the caustic $\Sigma_{S}(\mathcal{C})$ is the Zariski closure of $\Phi_{F, S}(\mathcal{C})$ and $\Phi_{F, S}$ is called the caustic map of \mathcal{C} from S. Observe that the Zariski closure of $R_{\mathcal{C}, S}(\mathcal{C})$ is then the dual curve of the caustic $\Sigma_{S}(\mathcal{C})$. In [7,8], we used this approach to establish precise formulas for the degree and class (both with

[^0]multiplicity) of $\Sigma_{S}(\mathcal{C})$ for any \mathcal{C} and any S. The degree with multiplicity of $\Sigma_{S}(\mathcal{C})$ means its degree multiplied by the degree of the rational map $\Phi_{F, S}$ restricted to \mathcal{C}. The class with multiplicity of $\Sigma_{S}(\mathcal{C})$ means its class multiplied by the degree of the rational map $R_{\mathcal{C}, s}$ restricted to \mathcal{C}. Our formulas complete the formula obtained by Chasles in [3] for the class of a caustic by reflection (for a generic \mathcal{C} and a generic S). Let us indicate that, in [1], Brocard and Lemoyne gave, without any proof, formulas for the degree and class of caustics by reflection (for a Plücker curve \mathcal{C} and for S not at infinity). It seems that their formulas come from an incorrect composition of formulas by Salmon and Cayley [10] for some characteristic invariants of pedal and evolute curves (using the representation of caustics by reflection given by Quetelet and Dandelin). This is discussed in [8]. Let us also mention the work of Catanese and Trifogli on focal loci, which generalizes evolutes to higher dimension [11,2].

The question of the birationality of the rational maps $R_{\mathcal{C}, S}$ and $\Phi_{F, S}$ on \mathcal{C} is not evident, even if S is not at infinity. Indeed, according to results of Quetelet and Dandelin [9,4], when S is not at infinity, the caustic $\Sigma_{S}(\mathcal{C})$ is the evolute of the S-centered homothety (with ratio 2) of the pedal of \mathcal{C} from S (i.e. the evolute of the orthotomic of \mathcal{C} with respect to S). But we just know that the evolute map is birational for a generic algebraic curve (see [5] by Fantechi).

In this note, we prove the birationality on \mathcal{C} of the maps $R_{\mathcal{C}, S}$ and $\Phi_{F, S}$ for any irreducible algebraic curve $\mathcal{C} \subset \mathbb{P}^{2}$ of degree $d \geqslant 2$ and for a generic S in \mathbb{P}^{2}. This result enables us to establish simple formulas for the degree and class of caustics by reflection valid for any irreducible algebraic curve $\mathcal{C} \subset \mathbb{P}^{2}$ of degree $d \geqslant 2$ and for a generic S in \mathbb{P}^{2}. In this study, the cyclic points $I=[1: i: 0]$ and $J=[1:-i: 0]$ play a particular role. We will also use the canonical projection $\pi: \mathbb{C}^{3} \backslash\{0\} \rightarrow \mathbb{P}^{2}$.

2. Birationality

Theorem 2.1. Let $\mathcal{C}=V(F) \subset \mathbb{P}^{2}$ be any irreducible algebraic curve of degree $d \geqslant 2$. For a generic $S \in \mathbb{P}^{2}$, the maps $R_{\mathcal{C}, S}$ and $\Phi_{F, S}$ are birational on \mathcal{C}.

Before going into the proof of our theorem, let us introduce some notations and recall some facts (see [7]). For any line $\mathcal{D}=V(a x+b y+c z) \in \mathbb{P}^{2}$ such that $a^{2}+b^{2} \neq 0$, we define the orthogonal symmetric with respect to \mathcal{D} as the rational map $\sigma_{\mathcal{D}}: \mathbb{P}^{2} \rightarrow \mathbb{P}^{2}$ (which is an involution) given by:

$$
\sigma_{\mathcal{D}}[x: y: z]=\pi\left(\left(a^{2}+b^{2}\right) \cdot(x, y, z)-2(a x+b y+c z) \cdot(a, b, 0)\right)
$$

Let $\mathcal{C}=V(F) \subset \mathbb{P}^{2}$ be an irreducible algebraic curve of degree $d \geqslant 2$ and let $S \in \mathbb{P}^{2} \backslash\{I, J\}$ be a (light) position. We define $\mathcal{C}_{0}:=\mathcal{C} \backslash V\left(F_{x}^{2}+F_{y}^{2}\right)$. Observe that this set corresponds to the complement in \mathcal{C} of the cyclic apparent contour of \mathcal{C} (the apparent contour of \mathcal{C} from the cyclic points). We recall that the reflected line $\mathcal{R}_{m, S, \mathcal{C}}$ at $m \in \mathcal{C}_{0} \backslash\{S\}$ is the line $\left(m \sigma_{\mathcal{T}_{m} \mathcal{C}}(S)\right.$), where $\mathcal{T}_{m} \mathcal{C}$ is the tangent to \mathcal{C} at m. For any $m \in \mathcal{C}_{0}$, we define the normal line $\mathcal{N}_{m} \mathcal{C}$ to \mathcal{C} at m as the line containing m and $\left[F_{x}(m): F_{y}(m): 0\right]$.

For any $m \in \mathcal{C}_{0}$, we consider the set K_{m} of points $S \in \mathbb{P}^{2}$ such that there exists $m^{\prime} \in \mathcal{C}_{0} \backslash\{m\}$ satisfying $R_{\mathcal{C}, S}\left(m^{\prime}\right)=$ $R_{\mathcal{C}, S}(m) \neq 0$. Observe that the set \mathcal{A} of $S \in \mathbb{P}^{2}$ such that $R_{\mathcal{C}, S}$ is not birational on \mathcal{C} can be written $\mathcal{A}=$ $\bigcup_{E \subset \mathcal{C}_{0}}: \# E<\infty \bigcap_{m \in \mathcal{C}_{0} \backslash E} K_{m}$. To prove that $R_{\mathcal{C}, S}$ is birational on \mathcal{C} for a generic S in \mathbb{P}^{2}, we prove that \mathcal{A} is contained in a subvariety of codimension at least 1 in \mathbb{P}^{2}. Our proof is based on the following lemma.

Lemma 2.2. For any $m \in \mathcal{C}_{0}$, the set K_{m} is contained in a (possibly non-irreducible) algebraic curve \bar{K}_{m} of degree at most $2 d^{2}+2$.
Proof. Let us consider any $m \in \mathcal{C}_{0}$. Let $S \in K_{m}$ and $m^{\prime} \in \mathcal{C}_{0} \backslash\{m\}$ satisfying $R_{\mathcal{C}, S}\left(m^{\prime}\right)=R_{\mathcal{C}, S}(m) \neq 0$. Then $\left(m m^{\prime}\right)=\mathcal{R}_{m, S, \mathcal{C}}=$ $\mathcal{R}_{m^{\prime}, S, \mathcal{C}}$ and so S is in $\mathcal{A}_{m, m^{\prime}}:=\sigma_{\mathcal{T}_{m} \mathcal{C}}\left(\left(m m^{\prime}\right)\right) \cap \sigma_{\mathcal{T}_{m^{\prime}} \mathcal{C}}\left(\left(m m^{\prime}\right)\right)$. Observe that, if $\sigma_{\mathcal{T}_{m} \mathcal{C}}\left(\left(m m^{\prime}\right)\right)=\sigma_{\mathcal{T}_{m^{\prime}} \mathcal{C}}\left(\left(m m^{\prime}\right)\right)$, then these lines are ($\mathrm{m} \mathrm{m}^{\prime}$) and so ($m \mathrm{~m}^{\prime}$) is stable by $\sigma_{\mathcal{T}_{m} \mathcal{C}}$ and by $\sigma_{\mathcal{T}_{m^{\prime}} \mathcal{C}}$. But $\mathcal{T}_{m} \mathcal{C}$ and $\mathcal{N}_{m} \mathcal{C}$ are the only lines containing m which are stable by $\sigma_{\mathcal{T}_{m} \mathcal{C}}$. Therefore, $\sigma_{\mathcal{T}_{m} \mathcal{C}}\left(\left(m m^{\prime}\right)\right)=\sigma_{\mathcal{T}_{m^{\prime}} \mathcal{C}}\left(\left(m m^{\prime}\right)\right)$ implies $S \in\left(m m^{\prime}\right) \subset \mathcal{T}_{m} \mathcal{C} \cup \mathcal{N}_{m} \mathcal{C}$. If $\sigma_{\mathcal{T}_{m} \mathcal{C}}\left(\left(m m^{\prime}\right)\right) \neq \sigma_{\mathcal{T}_{m^{\prime}} \mathcal{C}}\left(\left(m m^{\prime}\right)\right)$, then S is the only point of $\mathcal{A}_{m, m^{\prime}}$, so S is equal to

$$
\tau_{m}\left(m^{\prime}\right):=\left(m \wedge \sigma_{\mathcal{T}_{m} \mathcal{C}}\left(m^{\prime}\right)\right) \wedge\left(m^{\prime} \wedge \sigma_{\mathcal{T}_{m^{\prime}} \mathcal{C}}(m)\right)
$$

Notice that τ_{m} is a rational map with coordinates of degree $2 d$. So, due to [6, Proposition 4.4], $\tau_{m}(\mathcal{C})$ is contained in an algebraic curve of degree at most $\mathcal{C} \cdot \tau_{m}^{*}(H) \leqslant 2 d^{2}$ (where H is the hyperplane class in \mathbb{P}^{2}). Finally, we have $K_{m} \subseteq \bar{K}_{m}:=$ $\overline{\tau_{m}(\mathcal{C})} \cup \mathcal{T}_{m} \mathcal{C} \cup \mathcal{N}_{m} \mathcal{C}$, which is an algebraic curve of degree at most $2 d^{2}+2$.

Proof of Theorem 2.1. Let us prove that $R_{\mathcal{C}, S}$ is birational on \mathcal{C} for a generic S in \mathbb{P}^{2}. The birationality of $\Phi_{F, S}$ on \mathcal{C} will follow. Indeed, for a generic S in \mathbb{P}^{2}, the caustic $\Sigma_{S}(\mathcal{C})$ is a curve (see for example [8]). Therefore, for generic $m, m^{\prime} \in \mathcal{C}, \Phi_{F, S}(m)=\Phi_{F, S}\left(m^{\prime}\right)$ implies that $R_{\mathcal{C}, S}(m)=R_{\mathcal{C}, S}\left(m^{\prime}\right)$. With the notations of Lemma 2.2, we define $\mathcal{A}^{\prime}:=$ $\bigcup_{E \subset \mathcal{C}_{0}}: \# E<\infty \bigcap_{m \in \mathcal{C}_{0} \backslash E} \bar{K}_{m}$. We prove that the set $\mathcal{F}:=\left\{\bigcap_{m \in \mathcal{C}_{0} \backslash E} \bar{K}_{m}, E \subset \mathcal{C}_{0}, \# E<\infty\right\}$ is inductive for the inclusion. Let $\left(\mathcal{F}_{j}:=\bigcap_{m \in \mathcal{C}_{0} \backslash E_{j}} \bar{K}_{m}\right)_{j \geqslant 1}$ be an increasing sequence of sets belonging to \mathcal{F}. Let us show that the union Z of these sets is also in \mathcal{F}. First $Z \subseteq \bigcap_{m \in \mathcal{C}_{0} \backslash \bigcup_{i \geqslant 1} E_{i}} \bar{K}_{m} \subseteq \bar{K}_{m_{0}}$ for some fixed $m_{0} \in \mathcal{C}_{0} \backslash \bigcup_{i \geqslant 1} E_{i}$. Now $\bar{K}_{m_{0}}$ is the union of a finite number
of irreducible algebraic curves C_{1}, \ldots, C_{p}. Let $i \in\{1, \ldots, p\}$ and let d_{i} be the degree of C_{i}. If $C_{i} \subseteq Z$, then there exists $N_{i} \geqslant 1$ such that $C_{i} \subseteq \mathcal{F}_{N_{i}}$. Assume now that $C_{i} \nsubseteq Z$. Then $\left(C_{i} \cap \mathcal{F}_{j}\right)_{j \geqslant 1}$ is an increasing sequence of finite sets containing at most $d_{i} \times\left(2 d^{2}+2\right)$ points. Therefore, there exists $N_{i} \geqslant 1$ such that $\left(C_{i} \cap Z\right) \subseteq \mathcal{F}_{N_{i}}$. We conclude that $Z=\mathcal{F}_{\max \left(N_{1}, \ldots, N_{p}\right)}$ and so Z is in \mathcal{F}. So \mathcal{F} is inductive.

From the Zorn lemma, either \mathcal{F} is empty or it admits a maximal element (for the inclusion). If it is empty, then $\mathcal{A}=\mathcal{A}^{\prime}=\emptyset$. If it is not empty and if $\mathcal{F}_{0}:=\bigcap_{m \in \mathcal{C}_{0} \backslash E_{0}} \bar{K}_{m}$ (with $E_{0} \subset \mathcal{C}_{0}$ and $\# E_{0}<\infty$) is a maximal element of \mathcal{F}, then $\mathcal{A}^{\prime}=\mathcal{F}_{0}$. Indeed, \mathcal{A}^{\prime} contains \mathcal{F}_{0} by definition of \mathcal{A}^{\prime}. Conversely, let $S \in \mathcal{A}^{\prime}$, there exists $E \subset \mathcal{C}_{0}$ such that $\# E<\infty$ and such that $S \in \bigcap_{m \in \mathcal{C}_{0} \backslash E} \bar{K}_{m}$. Hence $S \in \bigcap_{m \in \mathcal{C}_{0} \backslash\left(E \cup E_{0}\right)} \bar{K}_{m}$. Since we also have $\bigcap_{m \in \mathcal{C}_{0} \backslash E_{0}} \bar{K}_{m} \subseteq \bigcap_{m \in \mathcal{C}_{0} \backslash\left(E \cup E_{0}\right)} \bar{K}_{m}$, we conclude that $S \in \bigcap_{m \in \mathcal{C}_{0} \backslash E_{0}} \bar{K}_{m}$. Therefore, in any case, \mathcal{A} is contained in an algebraic curve; this gives the S-genericity of the birationality of $R_{\mathcal{C}, S}$ on \mathcal{C} and so the statement of Theorem 2.1.

3. Light generic formulas for the degree and the class of caustics

Let $\mathcal{C}=V(F) \subset \mathbb{P}^{2}$ be any irreducible algebraic curve of degree $d \geqslant 2$. We call isotropic tangent to \mathcal{C} any tangent to \mathcal{C} containing I or J. Before stating our formulas, let us introduce some notations.

For any $P \in \mathbb{P}^{2}$, we write $\mu_{P}(\mathcal{C})$ for the multiplicity of \mathcal{C} at P. We recall that $\mu_{P}(\mathcal{C})=1$ means that P is a non-singular point of \mathcal{C}. For any $P \in \mathcal{C}$, we write $\operatorname{Branch}_{P}(\mathcal{C})$ for the set of branches of \mathcal{C} at P. Let us write $\mathcal{E}_{\mathcal{C}}$ for the set of couples (P, \mathcal{B}) with $P \in \mathcal{C}$ and with $\mathcal{B} \in \operatorname{Branch}_{P}(\mathcal{C})$. For any $(P, \mathcal{B}) \in \mathcal{E}_{\mathcal{C}}$, we write $\mathcal{T}_{P} \mathcal{B}$ for the tangent line to \mathcal{B} at P and $e_{\mathcal{B}}$ for the multiplicity of \mathcal{B}. We recall that $\sum_{\mathcal{B} \in \operatorname{Branch}_{P}(\mathcal{C})} e_{\mathcal{B}}=\mu_{P}(\mathcal{C})$. For any $(P, \mathcal{B}) \in \mathcal{E}_{\mathcal{C}}$ and any algebraic curve \mathcal{C}^{\prime}, we denote by $i_{P}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$ (resp. $i_{P}\left(\mathcal{B}, \mathcal{C}^{\prime}\right)$) the intersection number of \mathcal{C} (resp. \mathcal{B}) with \mathcal{C}^{\prime} at P. We recall that the contact number $\Omega_{P}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)$ of \mathcal{C} with \mathcal{C}^{\prime} is given by $\Omega_{P}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)=i_{P}\left(\mathcal{C}, \mathcal{C}^{\prime}\right)-\mu_{P}(\mathcal{C}) \mu_{P}\left(\mathcal{C}^{\prime}\right)$. The line at infinity of \mathbb{P}^{2} is written ℓ_{∞}. Combining Theorem 2.1 with the main results of $[7,8]$, we obtain:

Proposition 3.1. Let $\mathcal{C}=V(F) \subseteq \mathbb{P}^{2}$ be any irreducible algebraic curve of degree $d \geqslant 2$ and of class d^{\vee}. For a generic $S \in \mathbb{P}^{2}$, we have:

$$
\operatorname{deg}\left(\Sigma_{S}(\mathcal{C})\right)=3 d+f_{0}-t_{I}-t_{J} \quad \text { and } \quad \operatorname{class}\left(\Sigma_{S}(\mathcal{C})\right)=2 d^{\vee}+d-g-\mu_{I}(\mathcal{C})-\mu_{J}(\mathcal{C})
$$

where g is the contact number of \mathcal{C} with ℓ_{∞}, i.e. $g:=\sum_{m_{1} \in \mathcal{C} \cap \ell_{\infty}} \Omega_{m_{1}}\left(\mathcal{C}, \ell_{\infty}\right)$, where f_{0} is the number of "inflectional branches" of \mathcal{C} not tangent to the line at infinity, i.e.

$$
f_{0}:=\sum_{(P, \mathcal{B}) \in \mathcal{E}_{\mathcal{C}}: i_{P}\left(\mathcal{B}, \mathcal{T}_{P} \mathcal{B}\right)>2 e_{\mathcal{B}}, \mathcal{T}_{P} \mathcal{B} \neq \ell_{\infty}}\left(i_{P}\left(\mathcal{B}, \mathcal{T}_{P} \mathcal{B}\right)-2 e_{\mathcal{B}}\right)
$$

and where t_{P} is the number of branches of \mathcal{C} tangent at P to $\ell_{\infty}: t_{P}=\sum_{\mathcal{B} \in \operatorname{Branch}_{P}(\mathcal{C}):} \mathcal{T}_{P} \mathcal{B}=\ell_{\infty} e_{\mathcal{B}}$.
Proof. According to Theorem 2.1, for a generic S in \mathbb{P}^{2}, the degree and class (with multiplicity) of $\Sigma_{S}(\mathcal{C})$ are equal to its degree and class. For the degree formula, we use Theorem 20 of [7]. For the class formula, we use the main theorem of [8]. For a generic $S \in \mathbb{P}^{2}\left(S \in \mathbb{P}^{2} \backslash\left(\mathcal{C} \cup \ell_{\infty}\right)\right.$ not contained in an isotropic tangent to $\left.\mathcal{C}\right)$, we have $f=\mu_{I}(\mathcal{C})+\mu_{J}(\mathcal{C})$, $f^{\prime}=0$, $g^{\prime}=0$ and $q^{\prime}=0$ (with the notations of [8]).

Acknowledgement

We thank Fabrizio Catanese for discussions having motivated the redaction of this note on source generic results for caustics by reflection.

References

[1] H. Brocard, T. Lemoyne, Courbes géométriques remarquables. Courbes spéciales planes et gauches. Tome I, Nouveau tirage Librairie Scientifique et Technique Albert Blanchard, Paris, 1967, viii+451 pp. (in French).
[2] F. Catanese, C. Trifogli, Focal loci of algebraic varieties. I. Special issue in honor of Robin Hartshorne, Commun. Algebra 28 (12) (2000) $6017-6057$.
[3] M. Chasles, Détermination, par le principe des correspondances, de la classe de la développée et de la caustique par réflexion d'une courbe géométrique d'ordre m et de classe n, Nouv. Ann. Math. 2 ser. 10 (1871) 97-104, extrait C. R. séances A. S. t. LXII.
[4] G.P. Dandelin, Notes sur les caustiques par réflexion, 1822.
[5] B. Fantechi, The Evolute of a Plane Algebraic Curve, UTM, vol. 408, University of Trento, Italy, 1992.
[6] W. Fulton, Intersection Theory, 2nd edition, Springer-Verlag, 1998.
[7] A. Josse, F. Pène, On the degree of caustics by reflection, Commun. Algebra (2013), forthcoming.
[8] A. Josse, F. Pène, On the class of caustics by reflection, preprint, arXiv:1210.6551.
[9] L.A.J. Quetelet, Énoncés de quelques théorèmes nouveaux sur les caustiques, C. G. Q. 1 (1828) 14, 147-149.
[10] G. Salmon, A Treatise on the Higher Plane Curves: Intended as a Sequel to a Treatise on Conic Sections, Elibron Classics, 1934.
[11] C. Trifogli, Focal loci of algebraic hypersurfaces: a general theory, Geom. Dedic. 70 (1998) 1-26.

[^0]: E-mail addresses: alfrederic.josse@univ-brest.fr (A. Josse), francoise.pene@univ-brest.fr (F. Pène).
 1 Supported by the French ANR project GEODE (ANR-10-JCJC-0108).
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.04.019

