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Let X be a smooth projective curve of genus g � 2 over an algebraically closed field k of
characteristic p > 0, and let F : X → X1 be the relative Frobenius morphism. We show that
a vector bundle E on X1 is the direct image under F of some stable bundle on X if and
only if the instability of F ∗ E is equal to (p − 1)(2g − 2).

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soient X une courbe projective lisse de genre g � 2 définie sur un corps k algébriquement
clos de caractéristique p > 0, et F : X → X1 le morphisme de Frobenius relatif. On montre
qu’un fibré vectoriel E sur X1 est l’image directe sous F d’un certain fibré stable sur X si
et seulement si l’instabilité de F ∗ E est égale à (p − 1)(2g − 2).

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let X be a smooth projective curve of genus g � 2 defined over an algebraically closed field k of characteristic p > 0.
The absolute Frobenius morphism F X : X → X is induced by OX → OX , f �→ f p . Let F : X → X1 := X ×k k denote the
relative Frobenius morphism over k. One of the themes is to study its action on the geometric objects on X . Recall that a
vector bundle E on a smooth projective curve is called semi-stable (resp. stable) if μ(E ′) � μ(E) (resp. μ(E ′) < μ(E)) for
any nontrivial proper subbundle E ′ ⊂ E , where μ(E) is the slope of E . It is known that F∗ preserves the stability of vector
bundles (cf. [5]), but F ∗ does not preserve the semi-stability of vector bundles (cf. [1] for example).

Semi-stable bundles are basic constituents of vector bundles in the sense that any bundle E admits a unique filtration:

HN•(E): 0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HN�(E) = E,

which is the so-called Harder–Narasimhan filtration, such that:

(1) grHN
i (E) := HNi(E)/HNi−1(E) (1 � i � �) are semi-stable;

(2) μ(grHN
1 (E)) > μ(grHN

2 (E)) > · · · > μ(grHN
� (E)).

The rational number I(E) := μ(grHN
1 (E)) − μ(grHN

� (E)), which measures how far a vector bundle is from being semi-stable,
is called the instability of E . It is clear that E is semi-stable if and only if I(E) = 0.
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Given a semi-stable bundle E on X1, then F ∗E may not be semi-stable, so it is natural to consider the instability I(F ∗E).
In [4, Theorem 3.1], the author proves I(F ∗E) � (� − 1)(2g − 2), where � is the length of Harder–Narasimhan filtration
of F ∗E . If E = F∗W where W is a stable bundle on X , we know, by Sun’s theorem [5, Theorem 2.2], that E is stable,
the length of Harder–Narasimhan filtration of F ∗E is p and I(F ∗E) = (p − 1)(2g − 2). Thus I(F ∗E) = (p − 1)(2g − 2) is a
necessary condition for E to be a direct image under Frobenius. In this short note, we show the following theorem:

Theorem 1. Let E be a stable vector bundle on X. Then the following statements are equivalent:

(1) There exists a stable bundle W such that E = F∗W ;
(2) I(F ∗E) = (p − 1)(2g − 2).

The case rk E = p was proved in [3]. Our observation is that the arguments in [3] together with Sun’s theorem imply the
general case.

2. Proof of the theorem

Let X be a smooth projective curve over an algebraically closed field k with char(k) = p > 0. The absolute Frobenius
morphism F X : X → X is induced by the following homomorphism:

OX → OX , f �→ f p.

Let F : X → X1 := X ×k k denote the relative Frobenius morphism over k that satisfies the following commutative diagram:

X

F X

F X1 X

Spec(k)
Fk Spec(k).

For a vector bundle E on X , the slope of E is defined as

μ(E) := deg E

rk E
where rk E (resp. deg E) denotes the rank (resp. degree) of E . Then:

Definition 1. A vector bundle E on X is called semi-stable (resp. stable) if for any nontrivial proper subbundle E ′ ⊂ E , we
have

μ
(

E ′)� (resp. <)μ(E).

Theorem 2 (Harder–Narasimhan filtration). For any vector bundle E, there is a unique filtration:

HN•(E): 0 = HN0(E) ⊂ HN1(E) ⊂ · · · ⊂ HN�(E) = E,

which is called Harder–Narasimhan filtration, such that:

(1) grHN
i (E) := HNi(E)/HNi−1(E) (1 � i � �) are semi-stable;

(2) μ(grHN
1 (E)) > μ(grHN

2 (E)) > · · · > μ(grHN
� (E)).

By using this unique filtration of E , an invariant I(E) of E , which is called the instability of E was introduced (see [5]
and [4]). It is a rational number and measures how far is E from being semi-stable.

Definition 2. Let μmax(E) = μ(grHN
1 (E)), μmin(E) = μ(grHN

� (E)). Then the instability of E is defined to be

I(E) := μmax(E) − μmin(E).

It is easy to see that a vector bundle E is semi-stable if and only if I(E) = 0.
For any semi-stable bundle E , let

HN•
(

F ∗E
): 0 = HN0

(
F ∗E

) ⊂ HN1
(

F ∗E
) ⊂ · · · ⊂ HN�

(
F ∗E

) = F ∗E

be the Harder–Narasimhan filtration of F ∗E . Then we have the following lemma, which is implicit in [3].
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Lemma 1. For any semi-stable bundle E, we have

μmax
(

F ∗E
)
� p · μ(E) + (p − 1)(g − 1);

μmin
(

F ∗E
)
� p · μ(E) − (p − 1)(g − 1),

and if I(F ∗E) = μmax(F ∗E) − μmin(F ∗E) = (p − 1)(2g − 2). Then

μmax
(

F ∗E
) = p · μ(E) + (p − 1)(g − 1);

μmin
(

F ∗E
) = p · μ(E) − (p − 1)(g − 1).

Now we prove our theorem by using this Lemma 1, the canonical filtration on the vector bundle V = F ∗ F∗W and Sun’s
theorem on the stability of Frobenius’ direct images.

Proof of Theorem 1. (1) ⇒ (2). In [2, Section 5.3], there is a canonical filtration on the vector bundle V = F ∗ F∗W :

0 = V 0 ⊂ V 1 ⊂ · · · ⊂ V�−1 ⊂ V� ⊂ · · · ⊂ V p−1 ⊂ V p = V ,

which is indeed the Harder–Narasimhan filtration on V , and satisfies

V�/V�−1 ∼= (V�+1/V�) ⊗ Ω1
X

for 1 � �� p − 1, and V p/V p−1 ∼= W . So μ(V p/V p−1) = μ(W ), μ(V 0/V 1) = μ(W ) + (p − 1)(2g − 2), and now the result is
clear.

(2) ⇒ (1). Since I(F ∗E) = (p − 1)(2g − 2), we have μmax(F ∗E) = p · μ(E) + (p − 1)(g − 1), μmin(F ∗E) = p · μ(E) −
(p − 1)(g − 1) by Lemma 1. We consider the surjection:

F ∗E → grHN
�

(
F ∗E

)
.

The bundle grHN
� (F ∗E) is semi-stable of slope μmin(F ∗E). Replacing grHN

� (F ∗E) by a stable graded piece W in the Jordan–
Hölder filtration of grHN

� (F ∗E), we have a surjection:

F ∗E → W ,

where W is a stable bundle of slope μ(W ) = μmin(F ∗E) = p · μ(E) − (p − 1)(g − 1). By adjunction, we have a nontrivial
morphism:

ψ : E → F∗W .

By Sun’s theorem (cf. [5, Theorem 2.2]), we know that F∗W is a stable bundle of slope:

μ(F∗W ) = μ(W )

p
+ (p − 1)(g − 1)

p
= μ(E).

Thus ψ induce an isomorphism:

E ∼= F∗W . �
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