

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Algebraic Geometry

Stable bundles as Frobenius morphism direct image

Faisceaux stables en tant qu'images directes par le morphisme de Frobenius

Congjun Liu, Mingshuo Zhou

Institute of Mathematics, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, PR China

ARTICLE INFO

Article history: Received 27 January 2013 Accepted after revision 26 April 2013 Available online 4 June 2013

Presented by Claire Voisin

ABSTRACT

Let *X* be a smooth projective curve of genus $g \ge 2$ over an algebraically closed field *k* of characteristic p > 0, and let $F : X \to X_1$ be the relative Frobenius morphism. We show that a vector bundle *E* on X_1 is the direct image under *F* of some stable bundle on *X* if and only if the instability of F^*E is equal to (p - 1)(2g - 2).

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

RÉSUMÉ

Soient *X* une courbe projective lisse de genre $g \ge 2$ définie sur un corps *k* algébriquement clos de caractéristique p > 0, et $F : X \to X_1$ le morphisme de Frobenius relatif. On montre qu'un fibré vectoriel *E* sur X_1 est l'image directe sous *F* d'un certain fibré stable sur *X* si et seulement si l'instabilité de F^*E est égale à (p-1)(2g-2).

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Let *X* be a smooth projective curve of genus $g \ge 2$ defined over an algebraically closed field *k* of characteristic p > 0. The absolute Frobenius morphism $F_X : X \to X$ is induced by $\mathcal{O}_X \to \mathcal{O}_X$, $f \mapsto f^p$. Let $F : X \to X_1 := X \times_k k$ denote the relative Frobenius morphism over *k*. One of the themes is to study its action on the geometric objects on *X*. Recall that a vector bundle *E* on a smooth projective curve is called semi-stable (resp. stable) if $\mu(E') \le \mu(E)$ (resp. $\mu(E') < \mu(E)$) for any nontrivial proper subbundle $E' \subset E$, where $\mu(E)$ is the slope of *E*. It is known that F_* preserves the stability of vector bundles (cf. [5]), but F^* does not preserve the semi-stability of vector bundles (cf. [1] for example).

Semi-stable bundles are basic constituents of vector bundles in the sense that any bundle *E* admits a unique filtration:

 $HN_{\bullet}(E): \quad 0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_{\ell}(E) = E,$

which is the so-called Harder-Narasimhan filtration, such that:

(1) $\operatorname{gr}_{i}^{\operatorname{HN}}(E) := \operatorname{HN}_{i}(E)/\operatorname{HN}_{i-1}(E) \ (1 \leq i \leq \ell)$ are semi-stable; (2) $\mu(\operatorname{gr}_{1}^{\operatorname{HN}}(E)) > \mu(\operatorname{gr}_{2}^{\operatorname{HN}}(E)) > \cdots > \mu(\operatorname{gr}_{\ell}^{\operatorname{HN}}(E)).$

The rational number $I(E) := \mu(gr_1^{HN}(E)) - \mu(gr_{\ell}^{HN}(E))$, which measures how far a vector bundle is from being semi-stable, is called the instability of *E*. It is clear that *E* is semi-stable if and only if I(E) = 0.

E-mail addresses: liucongjun@amss.ac.cn (C. Liu), zhoumingshuo@amss.ac.cn (M. Zhou).

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.04.021

Given a semi-stable bundle *E* on X_1 , then F^*E may not be semi-stable, so it is natural to consider the instability $I(F^*E)$. In [4, Theorem 3.1], the author proves $I(F^*E) \leq (\ell - 1)(2g - 2)$, where ℓ is the length of Harder–Narasimhan filtration of F^*E . If $E = F_*W$ where *W* is a stable bundle on *X*, we know, by Sun's theorem [5, Theorem 2.2], that *E* is stable, the length of Harder–Narasimhan filtration of F^*E is *p* and $I(F^*E) = (p - 1)(2g - 2)$. Thus $I(F^*E) = (p - 1)(2g - 2)$ is a necessary condition for *E* to be a direct image under Frobenius. In this short note, we show the following theorem:

Theorem 1. Let *E* be a stable vector bundle on *X*. Then the following statements are equivalent:

- (1) There exists a stable bundle W such that $E = F_*W$;
- (2) $I(F^*E) = (p-1)(2g-2).$

The case $\operatorname{rk} E = p$ was proved in [3]. Our observation is that the arguments in [3] together with Sun's theorem imply the general case.

2. Proof of the theorem

Let *X* be a smooth projective curve over an algebraically closed field *k* with char(*k*) = p > 0. The absolute Frobenius morphism $F_X : X \to X$ is induced by the following homomorphism:

$$\mathcal{O}_X \to \mathcal{O}_X, \quad f \mapsto f^p.$$

Let $F: X \to X_1 := X \times_k k$ denote the relative Frobenius morphism over k that satisfies the following commutative diagram:

For a vector bundle *E* on *X*, the slope of *E* is defined as

$$\mu(E) := \frac{\deg E}{\operatorname{rk} E}$$

where rk *E* (resp. deg *E*) denotes the rank (resp. degree) of *E*. Then:

Definition 1. A vector bundle *E* on *X* is called semi-stable (resp. stable) if for any nontrivial proper subbundle $E' \subset E$, we have

$$\mu(E') \leq (\text{resp.} <) \mu(E).$$

Theorem 2 (Harder–Narasimhan filtration). For any vector bundle *E*, there is a unique filtration:

 $HN_{\bullet}(E): 0 = HN_0(E) \subset HN_1(E) \subset \cdots \subset HN_{\ell}(E) = E,$

which is called Harder-Narasimhan filtration, such that:

(1) $\operatorname{gr}_{i}^{\operatorname{HN}}(E) := \operatorname{HN}_{i}(E)/\operatorname{HN}_{i-1}(E) (1 \leq i \leq \ell) \text{ are semi-stable};$ (2) $\mu(\operatorname{gr}_{1}^{\operatorname{HN}}(E)) > \mu(\operatorname{gr}_{2}^{\operatorname{HN}}(E)) > \cdots > \mu(\operatorname{gr}_{\ell}^{\operatorname{HN}}(E)).$

By using this unique filtration of E, an invariant I(E) of E, which is called the instability of E was introduced (see [5] and [4]). It is a rational number and measures how far is E from being semi-stable.

Definition 2. Let $\mu_{\max}(E) = \mu(\operatorname{gr}_{1}^{\operatorname{HN}}(E)), \ \mu_{\min}(E) = \mu(\operatorname{gr}_{\ell}^{\operatorname{HN}}(E))$. Then the instability of *E* is defined to be

$$I(E) := \mu_{\max}(E) - \mu_{\min}(E).$$

It is easy to see that a vector bundle *E* is semi-stable if and only if I(E) = 0. For any semi-stable bundle *E*, let

 $HN_{\bullet}(F^*E): \quad 0 = HN_0(F^*E) \subset HN_1(F^*E) \subset \cdots \subset HN_{\ell}(F^*E) = F^*E$

be the Harder–Narasimhan filtration of F^*E . Then we have the following lemma, which is implicit in [3].

Lemma 1. For any semi-stable bundle E, we have

$$\mu_{\max}(F^*E) \leq p \cdot \mu(E) + (p-1)(g-1);$$

$$\mu_{\min}(F^*E) \geq p \cdot \mu(E) - (p-1)(g-1),$$

and if $I(F^*E) = \mu_{\max}(F^*E) - \mu_{\min}(F^*E) = (p-1)(2g-2)$. Then

$$\mu_{\max}(F^*E) = p \cdot \mu(E) + (p-1)(g-1);$$

$$\mu_{\min}(F^*E) = p \cdot \mu(E) - (p-1)(g-1).$$

Now we prove our theorem by using this Lemma 1, the canonical filtration on the vector bundle $V = F^*F_*W$ and Sun's theorem on the stability of Frobenius' direct images.

Proof of Theorem 1. (1) \Rightarrow (2). In [2, Section 5.3], there is a canonical filtration on the vector bundle $V = F^*F_*W$:

$$0 = V_0 \subset V_1 \subset \cdots \subset V_{\ell-1} \subset V_\ell \subset \cdots \subset V_{p-1} \subset V_p = V$$

which is indeed the Harder-Narasimhan filtration on V, and satisfies

$$V_{\ell}/V_{\ell-1} \cong (V_{\ell+1}/V_{\ell}) \otimes \Omega_X^1$$

for $1 \le \ell \le p-1$, and $V_p/V_{p-1} \cong W$. So $\mu(V_p/V_{p-1}) = \mu(W)$, $\mu(V_0/V_1) = \mu(W) + (p-1)(2g-2)$, and now the result is clear.

(2) \Rightarrow (1). Since I(F^*E) = (p - 1)(2g - 2), we have $\mu_{\max}(F^*E) = p \cdot \mu(E) + (p - 1)(g - 1)$, $\mu_{\min}(F^*E) = p \cdot \mu(E) - (p - 1)(g - 1)$ by Lemma 1. We consider the surjection:

$$F^*E \to \operatorname{gr}_{\ell}^{\operatorname{HN}}(F^*E)$$

The bundle $\operatorname{gr}_{\ell}^{\operatorname{HN}}(F^*E)$ is semi-stable of slope $\mu_{\min}(F^*E)$. Replacing $\operatorname{gr}_{\ell}^{\operatorname{HN}}(F^*E)$ by a stable graded piece *W* in the Jordan–Hölder filtration of $\operatorname{gr}_{\ell}^{\operatorname{HN}}(F^*E)$, we have a surjection:

 $F^*E \to W$,

where *W* is a stable bundle of slope $\mu(W) = \mu_{\min}(F^*E) = p \cdot \mu(E) - (p-1)(g-1)$. By adjunction, we have a nontrivial morphism:

$$\psi: E \to F_*W.$$

By Sun's theorem (cf. [5, Theorem 2.2]), we know that F_*W is a stable bundle of slope:

$$\mu(F_*W) = \frac{\mu(W)}{p} + \frac{(p-1)(g-1)}{p} = \mu(E).$$

Thus ψ induce an isomorphism:

$$E \cong F_*W.$$

Acknowledgement

The authors would like to thank their advisor Professor Xiaotao Sun for encouragements and many useful discussions.

References

- [1] D. Gieseker, Stable vector bundles and the Frobenius morphism, Ann. Sci. Éc. Norm. Super. (4) 6 (1973) 95-101.
- [2] K. Joshi, S. Ramanan, E. Xia, J.-K. Yu, On vector bundles destabilized by Frobenius pull-back, Compos. Math. 142 (3) (2006) 616–630.
- [3] V. Mehta, C. Pauly, Semistability of Frobenius direct images over curves, Bull. Soc. Math. Fr. 135 (2007) 105-117.
- [4] X. Sun, Remarks on semistability of G-bundles in positive characteristic, Compos. Math. 119 (1999) 41-52.
- [5] X. Sun, Direct images of bundles under Frobenius morphism, Invent. Math. 173 (2008) 427-447.