Inequality between unitary orbits

Inégalités entre orbites unitaires

Mitsuru Uchiyama ${ }^{1}$, Michio Seto ${ }^{1}$
Department of Mathematics, Shimane University, Matsue City, Shimane, Japan

A R T I C L E IN F O

Article history:

Received 18 March 2013
Accepted after revision 30 April 2013
Available online 27 May 2013
Presented by Jean-Michel Bony

Abstract

For bounded self-adjoint operators A and B we write $A \stackrel{u}{\leqslant} B$ if there is a unitary U such that $A \leqslant U^{*} B U$. In [7], Kosaki (1992) has shown that $A \leqslant B \Rightarrow \exp (A) \stackrel{u}{\leqslant} \exp (B)$. In this note, we extend this; especially, we show that for a function $f(t)=\sum_{i=1}^{n} c_{i} t^{a_{i}} e^{b_{i} t}$ with positive coefficients a_{i}, b_{i} and $c_{i}, 0 \leqslant A \stackrel{u}{\leqslant} B \Rightarrow f(A) \stackrel{u}{\leqslant} f(B)$. We then apply this to a positive linear map and get a similar inequality.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Pour deux opérateurs autoadjoints bornés A et B, nous écrirons $A \stackrel{u}{\leqslant} B$ s'il existe un opérateur unitaire U tel que $A \leqslant U^{*} B U$. Kosaki (1992) a montré dans [7] que $A \leqslant B \Rightarrow \exp (A) \stackrel{u}{\leqslant} \exp (B)$. Cette note étend ce résultat. En particulier nous montrons que pour les fonctions du type $f(t)=\sum_{i=1}^{n} c_{i} t^{a_{i}} e^{b_{i} t}$ avec des coefficients a_{i}, b_{i}, c_{i} positifs, on a $0 \leqslant A \stackrel{u}{\leqslant} B \Rightarrow f(A) \stackrel{u}{\leqslant} f(B)$. Ceci permet d'obtenir des inégalités similaires pour les applications linéaires positives unitales.
(C) 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let $B(\mathfrak{H})$ be the algebra of all bounded operators on a separable Hilbert space \mathfrak{H} and $B_{h}(\mathfrak{H})$ the subset of all self-adjoint operators. For $A, B \in B_{h}(\mathfrak{H})$, we write $A \leqslant B$ if $(A \mathbf{x}, \mathbf{x}) \leqslant(B \mathbf{x}, \mathbf{x})$ for every $\mathbf{x} \in \mathfrak{H}$. Let $\left\{E_{t}\right\},\left\{F_{t}\right\}$ be the spectral families for $A, B \in B_{h}(\mathfrak{H})$. Then $A \leqslant B$ clearly implies $\operatorname{dim} E_{t} \mathfrak{H} \geqslant \operatorname{dim} F_{t} \mathfrak{H}$. We write $A \preccurlyeq B$ if $E_{t} \geqslant F_{t}$ for every t, and this order is called spectral order. In [10] it was shown that if $A, B \geqslant 0$, then $A \preccurlyeq B$ if and only if $A^{a} \leqslant B^{a}$ for every $a>0$. In [11,12] this concept was extended to (unbounded) self-adjoint operators A and B bounded from below and it was shown that $A \preccurlyeq B$ if and only if $e^{-t B} \leqslant e^{-t A}$ for every $t>0$. Let $0 \leqslant A \leqslant B$, and let $B-A$ be of rank 1 . Then $A \preccurlyeq B$ if $A^{a} \leqslant B^{a}$ for some $a>1$ [13].
X and Y in $B(\mathfrak{H})$ are said to be unitarily equivalent or unitarily similar and denoted by $X \stackrel{u}{\sim} Y$ if there is a unitary U such that $Y=U^{*} X U . O(X):=\{Y \in B(\mathfrak{H}): X \stackrel{u}{\sim} Y\}$ is called the unitary orbit of X. For A and B in $B_{h}(\mathfrak{H})$ we write $A \stackrel{u}{\leqslant} B$ if there is a unitary U such that $A \leqslant U^{*} B U$. Likewise, we write $A \stackrel{u}{\preccurlyeq} B$ if there is a unitary U such that $A \preccurlyeq U^{*} B U$. It is evident that $A \stackrel{u}{\leqslant} B$ (or $A \stackrel{u}{\preccurlyeq} B$) if and only if there is $B^{\prime} \in O(B)$ such that $A \leqslant B^{\prime}$ (or $A \preccurlyeq B^{\prime}$).

[^0]1631-073X/\$ - see front matter © 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.
http://dx.doi.org/10.1016/j.crma.2013.04.024

To illuminate the importance of the concept $\stackrel{u}{\leqslant}$ in studying self-adjoint operators, we consider the case of $\operatorname{dim} \mathfrak{H}=n$; in this case we use conventional symbol H_{n} instead of $B_{h}(\mathfrak{H})$. Let $\lambda_{1}(A) \geqslant \cdots \geqslant \lambda_{n}(A)$ be eigenvalues of $A \in H_{n}$, where each eigenvalue is repeated as much as its multiplicity. Then $A \leqslant B$ implies $\lambda_{i}(A) \leqslant \lambda_{i}(B)(i=1,2, \ldots, n)$ (e.g., see [2]). We therefore obtain:
(i) $A \stackrel{u}{\leqslant} B$ and $B \stackrel{u}{\leqslant} A$ if and only if $A \stackrel{u}{\sim} B$.
(ii) If $A \stackrel{u}{\leqslant} B$, then $A \stackrel{u}{\preccurlyeq} B$.

The purpose of this paper is to study these facts for A and B in $B_{h}(\mathfrak{H})$. In [8] it was mentioned that if $0 \leqslant A \preccurlyeq U^{*} A U$, then $A=U^{*} A U$; but we will give a counterexample. We do not know if (ii) remains true for A and B in $B_{h}(\mathfrak{H})$. However, Kosaki [7], in virtue of an inequality by Ando [1], has shown the relevant inequality:

$$
\begin{equation*}
A \leqslant B \quad \Longrightarrow \quad \exp (A) \stackrel{u}{\leqslant} \exp (B) \tag{1}
\end{equation*}
$$

We will extend this in a different way, and then deal with a positive linear map.

2. Inequalities

We first consider (i) for A and B in $B_{h}(\mathfrak{H})$. It is evident that $A \stackrel{u}{\sim} B$ implies $A \stackrel{u}{\leqslant} B$ and $B \stackrel{u}{\leqslant} A$. But the converse implication does not hold (e.g., see [9]). We now show that even stronger condition $A \stackrel{u}{\preccurlyeq} B, B \stackrel{u}{\preccurlyeq} A$ does not necessarily imply $A \stackrel{u}{\sim} B$ by giving a counterexample.

Example 1. Let A and B be diagonal operators on $\ell^{2}(\mathbf{Z})$ defined by

$$
A=\operatorname{diag}(\ldots 0, \stackrel{\stackrel{0}{\vee}}{0}, 1,2,2, \ldots), \quad B=\operatorname{diag}(\ldots 0, \stackrel{0}{\vee}, 1,2,2, \ldots),
$$

and let U be the bilateral shift on $\ell^{2}(\mathbf{Z})$.
In this case, we have:

$$
U^{*} A U=\operatorname{diag}(\ldots 0,0, \stackrel{0}{1}, 2,2, \ldots)
$$

We hence get $A \preccurlyeq B \preccurlyeq U^{*} A U$. This means $A \preccurlyeq B \stackrel{u}{\preccurlyeq} A$. But since the dimensions of eigenspaces of $A-1$ and $B-1$ are different, A and B are not unitarily equivalent. This means $A \preccurlyeq U^{*} A U$ but $A \neq U^{*} A U$; this is a counterexample for Theorem 2.13 of [8]. Incidentally, $P:=\operatorname{diag}(\ldots 0, \stackrel{0}{1}, 1, \ldots)$ is a projection and $P \preccurlyeq U^{*} P U$ but $P \neq U^{*} P U$. This is a counterexample for Lemma 2.10 of [8] as well.

We next consider (1). In Theorem 2.8 of [8] it was tried to extend this; but the proof was as follows:
For $0<A \leqslant B$ and for any $r>0$ there is a unitary V such that $f\left(g(A)^{r}\right) \leqslant V^{*} f\left(g(B)^{r}\right) V .0 \leqslant A \leqslant B$ ensures $0<A+\epsilon \leqslant B+\epsilon$ for all $\epsilon>0$, so for any $r>0$, there is a unitary V such that $f\left(g(A+\epsilon)^{r}\right) \leqslant V^{*} f\left(g(B+\epsilon)^{r}\right) V$. By letting $\epsilon \rightarrow 0, f\left(g(A)^{r}\right) \leqslant$ $V^{*} f\left(g(B)^{r}\right) V$; and hence $f\left(g(A)^{r}\right) \stackrel{u}{\leqslant} f\left(g(B)^{r}\right)$ for any operator convex function f and any operator monotone function g.

But V depends on $\epsilon>0$, so authors should have referred to the limit of V; it is not obvious whether or not a sequence of unitary operators converges to a non-trivial unitary operator. In this sense, the proof is not complete.

From now on, we take a different approach to this problem. We start with a characterization of $A \leqslant B$ for $A, B \geqslant 0$.
Lemma 1. Let $A, B \geqslant 0$. Then $A \stackrel{u}{\leqslant} B$ if and only if there is a contraction X such that $A=X^{*} B X$ and $\operatorname{dim} \mathbf{N}\left(B^{1 / 2} X\right)=$ $\operatorname{dim} \mathbf{N}\left(X^{*} B^{1 / 2}\right) \leqslant \infty$, where $\mathbf{N}(X)=\{\mathbf{x}: X \mathbf{x}=\mathbf{0}\}$.

Proof. Assume there is a unitary U such that $A \leqslant U^{*} B U$. Then there is a contraction Y satisfying $A^{1 / 2}=Y U^{*} B^{1 / 2} U$. This implies $A=Y U^{*} B U Y^{*}$, because $A^{1 / 2}$ is self-adjoint. Putting $X=U Y^{*}$, we clearly get $A=X^{*} B X,\|X\| \leqslant 1$, and:

$$
\operatorname{dim} \mathbf{N}\left(X^{*} B^{1 / 2}\right)=\operatorname{dim} \mathbf{N}\left(Y U^{*} B^{1 / 2}\right)=\operatorname{dim} \mathbf{N}\left(A^{1 / 2}\right)=\operatorname{dim} \mathbf{N}\left(B^{1 / 2} X\right)
$$

We next show the converse implication. Let $B^{1 / 2} X=V\left|B^{1 / 2} X\right|$ be the polar decomposition. By the assumption, V has a unitary extension U. Since $A^{1 / 2}=\left|B^{1 / 2} X\right|$, in virtue of $V\left|B^{1 / 2} X\right|=U\left|B^{1 / 2} X\right|$, we have:

$$
U A U^{*}=U\left|B^{1 / 2} X\right|\left|B^{1 / 2} X\right| U^{*}=B^{1 / 2} X X^{*} B^{1 / 2} \leqslant B
$$

which yields $A \leqslant U^{*} B U$. This is the required result.
We remark that if B is invertible, then the condition on the null spaces in Lemma 1 reduces to $\operatorname{dim} \mathbf{N}(X)=\operatorname{dim} \mathbf{N}\left(X^{*}\right)$, which always holds if X is self-adjoint or invertible. The geometric mean:

$$
B^{-1} \# A:=B^{-1 / 2}\left(B^{1 / 2} A B^{1 / 2}\right)^{1 / 2} B^{-1 / 2}
$$

satisfies $A=\left(B^{-1} \# A\right) B\left(B^{-1} \# A\right)$. We therefore get:
Example 2. Suppose $A, B \geqslant 0$ and B is invertible. Then:

$$
B^{-1} \# A \leqslant 1 \quad \Longrightarrow \quad A \stackrel{u}{\leqslant} B .
$$

A continuous function $g(t)$ defined on an interval I is called an operator convex function if $g(s A+(1-s) B) \leqslant s g(A)+$ $(1-s) g(B)$ for $0<s<1$ and for A and B with spectra in I. A continuous function $f(t)$ defined on I is called an operator monotone function if $f(A) \leqslant f(B)$ whenever $A \leqslant B$. A power function t^{a} is operator monotone on $[0, \infty)$ if $0<a \leqslant 1$, and operator convex there if $1 \leqslant a \leqslant 2$. It is clear that $A \stackrel{u}{\leqslant} B$ implies $f(A) \stackrel{u}{\leqslant} f(B)$ for an operator monotone function $f(t)$.

Proposition 1. Let $g_{i}(t) \geqslant 0(i=1,2, \ldots, n)$ be an operator monotone function or an operator convex function on $[0, \infty)$ with $g_{i}(0)=0$. Let $A, B \geqslant 0$ and B be invertible. Then $0 \leqslant A \stackrel{u}{\leqslant} B$ implies:

$$
\left(g_{n} \circ \cdots \circ g_{1}\right)(A) \stackrel{u}{\leqslant}\left(g_{n} \circ \cdots \circ g_{1}\right)(B),
$$

where \circ is the symbol of composition. In particular, $A^{a} \stackrel{u}{\leqslant} B^{a}$ for every $a>0$.
Proof. We first show $g_{1}(A) \stackrel{u}{\leqslant} g_{1}(B)$. This is clear if $g_{1}(t)$ is operator monotone, so we assume that $g_{1}(t)$ is operator convex. We may also assume $g_{1}(t)$ is not a constant. By Lemma 1 there is a contraction X such that $A=X^{*} B X$ and $\operatorname{dim} \mathbf{N}(X)=\operatorname{dim} \mathbf{N}\left(X^{*}\right)$. By the Hansen-Pedersen inequality [5]:

$$
g_{1}(A)=g_{1}\left(X^{*} B X\right) \leqslant X^{*} g_{1}(B) X
$$

Since $0 \leqslant g_{1}(t)$ is strictly increasing, $g_{1}(B)$ is invertible as well. By Lemma 1 :

$$
X^{*} g_{1}(B) X \stackrel{u}{\leqslant} g_{1}(B)
$$

We therefore get $g_{1}(A) \stackrel{u}{\leqslant} g_{1}(B)$. By induction, we get the required result. Substituting power functions for $g_{i}(t)$ yields the last inequality.

We remark that the last statement does not imply that there is a common unitary U such that $A^{a} \leqq U^{*} B^{a} U$ for every $a>0$, namely $A \stackrel{u}{\preccurlyeq} B$. To extend this proposition, we use a few symbols induced in [16]. Let I be a right open interval, namely $I=(a, b)$ or $I=[a, b)$, and $\mathbb{P}_{+}^{-1}(I)$ the set of all increasing and continuous functions $h(t)$ on I such that $\lim _{t \rightarrow a+0} h(t)=0$, $\lim _{t \rightarrow b-0} h(t)=\infty$ and h^{-1} is operator monotone. Let $\mathbb{L} \mathbb{P}_{+}(I)$ denote the set of all functions $h(t)$ such that $h(t)>0$ on the interior of I and $\log h(t)$ is operator monotone there. e^{t} obviously belongs to $\mathbb{P}_{+}^{-1}(-\infty, \infty) \cap \mathbb{L} \mathbb{P}_{+}(-\infty, \infty)$. In Theorem 2.11 of [16] (also see [14,15]), it was shown that $\mathbb{L} \mathbb{P}_{+}(I) \cdot \mathbb{P}_{+}^{-1}(I) \subseteq \mathbb{P}_{+}^{-1}(I)$; hence for $a \geqslant 1, b>0$: $t^{a} e^{b t} \in \mathbb{P}_{+}^{-1}[0, \infty) \cap \mathbb{L} \mathbb{P}_{+}[0, \infty$). If $g(t)$ is an operator convex function on $[0, \infty)$ with $g(0)=0$, then: $g(t) \in \mathbb{P}_{+}^{-1}[0, \infty) \cap \mathbb{L} \mathbb{P}_{+}[0, \infty)$ since $g(t) / t$ is operator monotone. Moreover, in Corollary 4.3 of [16] it was proved that:
if $h \in \mathbb{P}_{+}^{-1}(I) \cap \mathbb{L} \mathbb{P}_{+}(I), p \geqslant 1, r>0$ and $0<\alpha \leqslant \frac{r}{p+r}$ then for A, B with $\sigma(A), \sigma(B) \subset I$

$$
A \leqslant B \Rightarrow\left\{\begin{array}{l}
\left(h(A)^{\frac{r}{2}} h(A)^{p} h(A)^{\frac{r}{2}}\right)^{\alpha} \leqslant\left(h(A)^{\frac{r}{2}} h(B)^{p} h(A)^{\frac{r}{2}}\right)^{\alpha}, \tag{2}\\
\left(h(B)^{\frac{r}{2}} h(A)^{p} h(B)^{\frac{r}{2}}\right)^{\alpha} \leqslant\left(h(B)^{\frac{r}{2}} h(B)^{p} h(B)^{\frac{r}{2}}\right)^{\alpha}
\end{array}\right.
$$

We are now in the position to state the main result.
Theorem 1. Let $h \in \mathbb{P}_{+}^{-1}(I) \cap \mathbb{L} \mathbb{P}_{+}(I)$ and $\sigma(A), \sigma(B) \subset I$. Suppose $h(B)$ is invertible. Then, for every $a>0$:

$$
\begin{equation*}
A \stackrel{u}{\leqslant} B \quad \Longrightarrow \quad h(A)^{a} \stackrel{u}{\leqslant} h(B)^{a} . \tag{3}
\end{equation*}
$$

In particular, if $0 \leqslant A \stackrel{u}{\leqslant} B$ and B is invertible, then for $a>0, b \geqslant 0$:

$$
\begin{equation*}
A^{a} e^{b A} \stackrel{u}{\leqslant} B^{a} e^{b B} \tag{4}
\end{equation*}
$$

moreover, for $a_{i}>0, b_{i} \geqslant 0, c_{i} \geqslant 0$:

$$
\begin{equation*}
\sum_{i=1}^{n} c_{i} A^{a_{i}} e^{b_{i} A} \stackrel{u}{\leqslant} \sum_{i=1}^{n} c_{i} B^{a_{i}} e^{b_{i} B} \tag{5}
\end{equation*}
$$

Proof. We first show (3) in the case $a=1$. Suppose $U^{*} A U \leqslant B$. Put $p=r=1$ and $\alpha=1 / 2$ in the second inequality of (2) to get: $\left(h(B)^{\frac{1}{2}} h\left(U^{*} A U\right) h(B)^{\frac{1}{2}}\right)^{\frac{1}{2}} \leqslant h(B)$, which means $h(B)^{-1} \# h\left(U^{*} A U\right) \leqslant 1$. By Example 2 we have $h\left(U^{*} A U\right) \stackrel{u}{\leqslant} h(B)$, which implies (3). In the case of $a>1, h(t)^{a}$ itself belongs to $\mathbb{P}_{+}^{-1}(I) \cap \mathbb{L} \mathbb{P}_{+}(I)$. In the case of $0<a<1, h(A)^{a} \stackrel{u}{\leqslant} h(B)^{a}$ follows from $h(A) \stackrel{u}{\leqslant} h(B)$, because t^{a} is operator monotone. We have consequently shown (3). Since $t e^{\frac{b}{a} t} \in \mathbb{P}_{+}^{-1}[0, \infty) \cap \mathbb{L} \mathbb{P}_{+}[0, \infty)$, (3) deduces (4). To show (5) put $a=\max \left\{1, a_{1}, \ldots, a_{n}\right\}$ and $b=\max \left\{b_{i}: 1 \leqslant i \leqslant n\right\}$. Then by (4) there is a unitary U such that $A^{a} e^{b A} \leqslant U^{*} B^{a} e^{b B} U$. Since for each i there is an operator monotone function ϕ_{i} such that $t^{a_{i}} e^{b_{i} t}=\phi_{i}\left(t^{a} e^{b t}\right.$) (see Theorem 2.11 of [16]) we obtain:

$$
A^{a_{i}} e^{b_{i} A}=\phi_{i}\left(A^{a} e^{b A}\right) \leqslant \phi_{i}\left(U^{*} B^{a} e^{b B} U\right)=U^{*} B^{a_{i}} e^{b_{i} B} U
$$

for each i. This yields (5) since $c_{i} \geqslant 0$.
We remark that (3) involves (1) and Proposition 1, because $e^{t} \in \mathbb{P}_{+}^{-1}(-\infty, \infty) \cap \mathbb{L} \mathbb{P}_{+}(-\infty, \infty)$ and $g_{i}(t) \in \mathbb{P}_{+}^{-1}[0, \infty) \cap$ $\mathbb{L} \mathbb{P}_{+}[0, \infty)$.

Let ϕ be a unital positive linear map on $B_{h}(\mathfrak{H})$. Then, Choi [4] has shown that for $A \geqslant 0$ and an operator convex function $g(t) \geqslant 0$ on $(0, \infty)$:

$$
\begin{equation*}
g(\phi(A)) \leqslant \phi(g(A)) \tag{6}
\end{equation*}
$$

In particular, $\phi(A)^{2} \leqslant \phi\left(A^{2}\right)$ [6]. Of course, $\phi(A)^{a} \leqslant \phi\left(A^{a}\right)$ does not necessarily hold for $a>2$. However we have the following:

Proposition 2. Let ϕ be a unital positive linear map, and let $g_{i}(t) \geqslant 0$ be operator convex functions on $[0, \infty)$ with $g_{i}(0)=0$. Then for invertible $A \geqslant 0$:

$$
\left(g_{n} \circ \cdots \circ g_{1}\right)(\phi(A)) \stackrel{u}{\leqslant} \phi\left(\left(g_{n} \circ \cdots \circ g_{1}\right)(A)\right)
$$

In particular, for $a>2$:

$$
(\phi(A))^{a} \stackrel{u}{\leqslant} \phi\left(A^{a}\right)
$$

Proof. By (6) we first get $g_{1}(\phi(A)) \leqslant \phi\left(g_{1}(A)\right)$. Since $\phi\left(g_{1}(A)\right)$ is invertible, it follows from Proposition 1 and (6) that:

$$
g_{2}\left(g_{1}(\phi(A))\right) \stackrel{u}{\leqslant} g_{2}\left(\phi\left(g_{1}(A)\right)\right) \leqslant \phi\left(g_{2}\left(g_{1}(A)\right)\right)
$$

This implies that $g_{2}\left(g_{1}(\phi(A))\right) \stackrel{u}{\leqslant} \phi\left(g_{2}\left(g_{1}(A)\right)\right)$. By induction, we obtain the desired result.
We remark that Bourin and Lee [3] have shown that if g is a monotone convex function on \mathbf{R} and A is a bounded self-adjoint operator, then for an arbitrary $0<r \in \mathbf{R}$:

$$
g(\phi(A)) \stackrel{u}{\leqslant} \phi(g(A))+r I
$$

Acknowledgement

The authors express their thanks to the referee for giving them valuable comments.

References

[^1]
[^0]: E-mail addresses: uchiyama@riko.shimane-u.ac.jp (M. Uchiyama), mseto@riko.shimane-u.ac.jp (M. Seto).
 1 The authors were supported in part by (JSPS) KAKENHI 21540181 and 23740106.

[^1]: [1] T. Ando, On some operator inequalities, Math. Ann. 279 (1987) 157-159.
 [2] R. Bhatia, Matrix Analysis, Springer, 1996.
 [3] J.C. Bourin, E.Y. Lee, Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc. 44 (2012) 1085-1102.
 [4] M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974) 565-574.
 [5] F. Hansen, G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982) 229-241.
 [6] R.V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. 56 (1952) 494-503.
 [7] H. Kosaki, On some trace inequalities, Proc. Centre Math. Appl. Austral. Nat. Univ. 29 (1992) 129-134.
 [8] M.S. Moslehian, S.M.S.N. Sales, H. Najafi, On the binary relation $\leqslant u$ on self-adjoint Hilbert space operators, C. R. Acad. Sci. Paris, Ser. I 350 (2012) 407-410.
 [9] T. Okayasu, Y. Ueta, A condition under which $B=A=U^{*} B U$ follows from $B \leqslant A \leqslant U^{*} B U$, Proc. Amer. Math. Soc. 135 (5) (2007) $1399-1403$.
 [10] M.P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (1971) $537-544$.
 [11] M. Uchiyama, Commutativity of selfadjoint operators, Pacific J. Math. 161 (1993) 385-392.
 [12] M. Uchiyama, Perturbation and commutativity of unbounded selfadjoint operators, Bull. Fukuoka Univ. Ed. III 44 (1995) 15-20.
 [13] M. Uchiyama, Strong monotonicity of operator functions, Integral Equations Operator Theory 37 (2000) 95-105.
 [14] M. Uchiyama, Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal. 175 (2000) $330-347$.
 [15] M. Uchiyama, M. Hasumi, On some operator monotone functions, Integral Equations Operator Theory 42 (2002) 243-251.
 [16] M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities II, J. Math. Soc. Japan 60 (2008) $291-310$.

