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For bounded self-adjoint operators A and B we write A
u
� B if there is a unitary U such

that A � U∗ BU . In [7], Kosaki (1992) has shown that A � B ⇒ exp(A)
u
� exp(B). In this

note, we extend this; especially, we show that for a function f (t) = ∑n
i=1 citai ebit with

positive coefficients ai , bi and ci , 0 � A
u
� B ⇒ f (A)

u
� f (B). We then apply this to a

positive linear map and get a similar inequality.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

r é s u m é

Pour deux opérateurs autoadjoints bornés A et B , nous écrirons A
u
� B s’il existe

un opérateur unitaire U tel que A � U∗ BU . Kosaki (1992) a montré dans [7] que

A � B ⇒ exp(A)
u
� exp(B). Cette note étend ce résultat. En particulier nous montrons que

pour les fonctions du type f (t) = ∑n
i=1 citai ebit avec des coefficients ai , bi , ci positifs,

on a 0 � A
u
� B ⇒ f (A)

u
� f (B). Ceci permet d’obtenir des inégalités similaires pour les

applications linéaires positives unitales.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let B(H) be the algebra of all bounded operators on a separable Hilbert space H and Bh(H) the subset of all self-adjoint
operators. For A, B ∈ Bh(H), we write A � B if (Ax,x) � (Bx,x) for every x ∈ H. Let {Et}, {Ft} be the spectral families for
A, B ∈ Bh(H). Then A � B clearly implies dim EtH� dim FtH. We write A � B if Et � Ft for every t , and this order is called
spectral order. In [10] it was shown that if A, B � 0, then A � B if and only if Aa � Ba for every a > 0. In [11,12] this concept
was extended to (unbounded) self-adjoint operators A and B bounded from below and it was shown that A � B if and only
if e−t B � e−t A for every t > 0. Let 0 � A � B , and let B − A be of rank 1. Then A � B if Aa � Ba for some a > 1 [13].

X and Y in B(H) are said to be unitarily equivalent or unitarily similar and denoted by X
u� Y if there is a unitary U such

that Y = U∗ XU . O(X) := {Y ∈ B(H): X
u� Y } is called the unitary orbit of X . For A and B in Bh(H) we write A

u
� B if there

is a unitary U such that A � U∗BU . Likewise, we write A
u
� B if there is a unitary U such that A � U∗BU . It is evident that

A
u
� B (or A

u
� B) if and only if there is B ′ ∈ O(B) such that A � B ′ (or A � B ′).
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To illuminate the importance of the concept
u
� in studying self-adjoint operators, we consider the case of dimH = n;

in this case we use conventional symbol Hn instead of Bh(H). Let λ1(A) � · · · � λn(A) be eigenvalues of A ∈ Hn , where
each eigenvalue is repeated as much as its multiplicity. Then A � B implies λi(A) � λi(B) (i = 1,2, . . . ,n) (e.g., see [2]).
We therefore obtain:

(i) A
u
� B and B

u
� A if and only if A

u� B .

(ii) If A
u
� B , then A

u
� B .

The purpose of this paper is to study these facts for A and B in Bh(H). In [8] it was mentioned that if 0 � A � U∗ AU ,
then A = U∗ AU ; but we will give a counterexample. We do not know if (ii) remains true for A and B in Bh(H). However,
Kosaki [7], in virtue of an inequality by Ando [1], has shown the relevant inequality:

A � B �⇒ exp(A)
u
� exp(B). (1)

We will extend this in a different way, and then deal with a positive linear map.

2. Inequalities

We first consider (i) for A and B in Bh(H). It is evident that A
u� B implies A

u
� B and B

u
� A. But the converse implication

does not hold (e.g., see [9]). We now show that even stronger condition A
u
� B , B

u
� A does not necessarily imply A

u� B by
giving a counterexample.

Example 1. Let A and B be diagonal operators on �2(Z) defined by

A = diag(. . . 0,

0∨
0,1,2,2, . . .), B = diag(. . . 0,

0∨
1,1,2,2, . . .),

and let U be the bilateral shift on �2(Z).

In this case, we have:

U∗ AU = diag(. . . 0,0,

0∨
1,2,2, . . .).

We hence get A � B � U∗ AU . This means A � B
u
� A. But since the dimensions of eigenspaces of A − 1 and B − 1 are

different, A and B are not unitarily equivalent. This means A � U ∗ AU but A 	= U∗ AU ; this is a counterexample for Theo-

rem 2.13 of [8]. Incidentally, P := diag(. . . 0,

0∨
1,1, . . .) is a projection and P � U∗ P U but P 	= U∗ P U . This is a counterexample

for Lemma 2.10 of [8] as well.
We next consider (1). In Theorem 2.8 of [8] it was tried to extend this; but the proof was as follows:
For 0 < A � B and for any r > 0 there is a unitary V such that f (g(A)r) � V ∗ f (g(B)r)V . 0 � A � B ensures 0 < A + ε � B + ε

for all ε > 0, so for any r > 0, there is a unitary V such that f (g(A + ε)r) � V ∗ f (g(B + ε)r)V . By letting ε → 0, f (g(A)r) �
V ∗ f (g(B)r)V ; and hence f (g(A)r)

u
� f (g(B)r) for any operator convex function f and any operator monotone function g .

But V depends on ε > 0, so authors should have referred to the limit of V ; it is not obvious whether or not a sequence
of unitary operators converges to a non-trivial unitary operator. In this sense, the proof is not complete.

From now on, we take a different approach to this problem. We start with a characterization of A
u
� B for A, B � 0.

Lemma 1. Let A, B � 0. Then A
u
� B if and only if there is a contraction X such that A = X∗B X and dim N(B1/2 X) =

dim N(X∗B1/2) �∞, where N(X) = {x: Xx = 0}.

Proof. Assume there is a unitary U such that A � U∗BU . Then there is a contraction Y satisfying A1/2 = Y U∗B1/2U . This
implies A = Y U∗BU Y ∗ , because A1/2 is self-adjoint. Putting X = U Y ∗ , we clearly get A = X∗B X , ‖X‖� 1, and:

dim N
(

X∗B1/2) = dim N
(
Y U∗B1/2) = dim N

(
A1/2) = dim N

(
B1/2 X

)
.

We next show the converse implication. Let B1/2 X = V |B1/2 X | be the polar decomposition. By the assumption, V has a
unitary extension U . Since A1/2 = |B1/2 X |, in virtue of V |B1/2 X | = U |B1/2 X |, we have:

U AU∗ = U
∣∣B1/2 X

∣∣∣∣B1/2 X
∣∣U∗ = B1/2 X X∗B1/2 � B,

which yields A � U∗BU . This is the required result. �
We remark that if B is invertible, then the condition on the null spaces in Lemma 1 reduces to dim N(X) = dim N(X∗),

which always holds if X is self-adjoint or invertible. The geometric mean:
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B−1#A := B−1/2(B1/2 AB1/2)1/2
B−1/2

satisfies A = (B−1#A)B(B−1#A). We therefore get:

Example 2. Suppose A, B � 0 and B is invertible. Then:

B−1#A � 1 �⇒ A
u
� B.

A continuous function g(t) defined on an interval I is called an operator convex function if g(sA + (1 − s)B) � sg(A) +
(1 − s)g(B) for 0 < s < 1 and for A and B with spectra in I . A continuous function f (t) defined on I is called an operator
monotone function if f (A) � f (B) whenever A � B . A power function ta is operator monotone on [0,∞) if 0 < a � 1, and

operator convex there if 1 � a � 2. It is clear that A
u
� B implies f (A)

u
� f (B) for an operator monotone function f (t).

Proposition 1. Let gi(t) � 0 (i = 1,2, . . . ,n) be an operator monotone function or an operator convex function on [0,∞) with

gi(0) = 0. Let A, B � 0 and B be invertible. Then 0 � A
u
� B implies:

(gn ◦ · · · ◦ g1)(A)
u
� (gn ◦ · · · ◦ g1)(B),

where ◦ is the symbol of composition. In particular, Aa
u
� Ba for every a > 0.

Proof. We first show g1(A)
u
� g1(B). This is clear if g1(t) is operator monotone, so we assume that g1(t) is operator

convex. We may also assume g1(t) is not a constant. By Lemma 1 there is a contraction X such that A = X∗B X and
dim N(X) = dim N(X∗). By the Hansen–Pedersen inequality [5]:

g1(A) = g1
(

X∗B X
)
� X∗g1(B)X .

Since 0 � g1(t) is strictly increasing, g1(B) is invertible as well. By Lemma 1:

X∗g1(B)X
u
� g1(B).

We therefore get g1(A)
u
� g1(B). By induction, we get the required result. Substituting power functions for gi(t) yields the

last inequality. �
We remark that the last statement does not imply that there is a common unitary U such that Aa � U∗BaU for every

a > 0, namely A
u
� B . To extend this proposition, we use a few symbols induced in [16]. Let I be a right open interval, namely

I = (a,b) or I = [a,b), and P
−1+ (I) the set of all increasing and continuous functions h(t) on I such that limt→a+0 h(t) = 0,

limt→b−0 h(t) = ∞ and h−1 is operator monotone. Let LP+(I) denote the set of all functions h(t) such that h(t) > 0 on the
interior of I and log h(t) is operator monotone there. et obviously belongs to P

−1+ (−∞,∞)∩LP+(−∞,∞). In Theorem 2.11
of [16] (also see [14,15]), it was shown that LP+(I) ·P−1+ (I) ⊆ P

−1+ (I); hence for a � 1, b > 0: taebt ∈ P
−1+ [0,∞)∩LP+[0,∞).

If g(t) is an operator convex function on [0,∞) with g(0) = 0, then: g(t) ∈ P
−1+ [0,∞) ∩LP+[0,∞) since g(t)/t is operator

monotone. Moreover, in Corollary 4.3 of [16] it was proved that:
if h ∈ P

−1+ (I) ∩LP+(I), p � 1, r > 0 and 0 < α � r
p+r then for A, B with σ(A),σ (B) ⊂ I

A � B ⇒
{ (

h(A)
r
2 h(A)ph(A)

r
2
)α �

(
h(A)

r
2 h(B)ph(A)

r
2
)α

,(
h(B)

r
2 h(A)ph(B)

r
2
)α �

(
h(B)

r
2 h(B)ph(B)

r
2
)α

.
(2)

We are now in the position to state the main result.

Theorem 1. Let h ∈ P
−1+ (I) ∩LP+(I) and σ(A),σ (B) ⊂ I . Suppose h(B) is invertible. Then, for every a > 0:

A
u
� B �⇒ h(A)a

u
� h(B)a. (3)

In particular, if 0 � A
u
� B and B is invertible, then for a > 0, b � 0:

Aaeb A
u
� BaebB; (4)

moreover, for ai > 0, bi � 0, ci � 0:

n∑
i=1

ci Aai ebi A
u
�

n∑
i=1

ci Bai ebi B . (5)



288 M. Uchiyama, M. Seto / C. R. Acad. Sci. Paris, Ser. I 351 (2013) 285–288
Proof. We first show (3) in the case a = 1. Suppose U∗ AU � B . Put p = r = 1 and α = 1/2 in the second inequality of (2) to

get: (h(B)
1
2 h(U∗ AU )h(B)

1
2 )

1
2 � h(B), which means h(B)−1#h(U∗ AU ) � 1. By Example 2 we have h(U∗ AU )

u
� h(B), which

implies (3). In the case of a > 1, h(t)a itself belongs to P
−1+ (I) ∩ LP+(I). In the case of 0 < a < 1, h(A)a

u
� h(B)a follows

from h(A)
u
� h(B), because ta is operator monotone. We have consequently shown (3). Since te

b
a t ∈ P

−1+ [0,∞) ∩LP+[0,∞),
(3) deduces (4). To show (5) put a = max{1,a1, . . . ,an} and b = max{bi: 1 � i � n}. Then by (4) there is a unitary U
such that Aaeb A � U∗BaebB U . Since for each i there is an operator monotone function φi such that tai ebit = φi(taebt) (see
Theorem 2.11 of [16]) we obtain:

Aai ebi A = φi
(

Aaeb A)
� φi

(
U∗BaebB U

) = U∗Bai ebi B U

for each i. This yields (5) since ci � 0. �
We remark that (3) involves (1) and Proposition 1, because et ∈ P

−1+ (−∞,∞) ∩ LP+(−∞,∞) and gi(t) ∈ P
−1+ [0,∞) ∩

LP+[0,∞).
Let φ be a unital positive linear map on Bh(H). Then, Choi [4] has shown that for A � 0 and an operator convex function

g(t) � 0 on (0,∞):

g
(
φ(A)

)
� φ

(
g(A)

)
. (6)

In particular, φ(A)2 � φ(A2) [6]. Of course, φ(A)a � φ(Aa) does not necessarily hold for a > 2. However we have the
following:

Proposition 2. Let φ be a unital positive linear map, and let gi(t) � 0 be operator convex functions on [0,∞) with gi(0) = 0. Then
for invertible A � 0:

(gn ◦ · · · ◦ g1)
(
φ(A)

) u
� φ

(
(gn ◦ · · · ◦ g1)(A)

)
.

In particular, for a > 2:(
φ(A)

)a u
� φ

(
Aa).

Proof. By (6) we first get g1(φ(A)) � φ(g1(A)). Since φ(g1(A)) is invertible, it follows from Proposition 1 and (6) that:

g2
(

g1
(
φ(A)

)) u
� g2

(
φ
(

g1(A)
))

� φ
(

g2
(

g1(A)
))

.

This implies that g2(g1(φ(A)))
u
� φ(g2(g1(A))). By induction, we obtain the desired result. �

We remark that Bourin and Lee [3] have shown that if g is a monotone convex function on R and A is a bounded
self-adjoint operator, then for an arbitrary 0 < r ∈ R:

g
(
φ(A)

) u
� φ

(
g(A)

) + r I.
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