

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

Functional Analysis

Inequality between unitary orbits

Inégalités entre orbites unitaires

Mitsuru Uchiyama¹, Michio Seto¹

Department of Mathematics, Shimane University, Matsue City, Shimane, Japan

ARTICLE INFO

Article history: Received 18 March 2013 Accepted after revision 30 April 2013 Available online 27 May 2013

Presented by Jean-Michel Bony

ABSTRACT

For bounded self-adjoint operators *A* and *B* we write $A \leq B$ if there is a unitary *U* such that $A \leq U^*BU$. In [7], Kosaki (1992) has shown that $A \leq B \Rightarrow \exp(A) \leq \exp(B)$. In this note, we extend this; especially, we show that for a function $f(t) = \sum_{i=1}^{n} c_i t^{a_i} e^{b_i t}$ with positive coefficients a_i , b_i and c_i , $0 \leq A \leq B \Rightarrow f(A) \leq f(B)$. We then apply this to a positive linear map and get a similar inequality.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

RÉSUMÉ

Pour deux opérateurs autoadjoints bornés *A* et *B*, nous écrirons $A \leq B$ s'il existe un opérateur unitaire *U* tel que $A \leq U^*BU$. Kosaki (1992) a montré dans [7] que $A \leq B \Rightarrow \exp(A) \leq \exp(B)$. Cette note étend ce résultat. En particulier nous montrons que pour les fonctions du type $f(t) = \sum_{i=1}^{n} c_i t^{a_i} e^{b_i t}$ avec des coefficients a_i , b_i , c_i positifs, on a $0 \leq A \leq B \Rightarrow f(A) \leq f(B)$. Ceci permet d'obtenir des inégalités similaires pour les applications linéaires positives unitales.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let $B(\mathfrak{H})$ be the algebra of all bounded operators on a separable Hilbert space \mathfrak{H} and $B_h(\mathfrak{H})$ the subset of all self-adjoint operators. For $A, B \in B_h(\mathfrak{H})$, we write $A \leq B$ if $(A\mathbf{x}, \mathbf{x}) \leq (B\mathbf{x}, \mathbf{x})$ for every $\mathbf{x} \in \mathfrak{H}$. Let $\{E_t\}$, $\{F_t\}$ be the spectral families for $A, B \in B_h(\mathfrak{H})$. Then $A \leq B$ clearly implies dim $E_t \mathfrak{H} \geq \mathfrak{H}_t \mathfrak{H}$. We write $A \leq B$ if $E_t \geq F_t$ for every t, and this order is called *spectral order*. In [10] it was shown that if $A, B \geq 0$, then $A \leq B$ if and only if $A^a \leq B^a$ for every a > 0. In [11,12] this concept was extended to (unbounded) self-adjoint operators A and B bounded from below and it was shown that $A \leq B$ if and only if $e^{-tB} \leq e^{-tA}$ for every t > 0. Let $0 \leq A \leq B$, and let B - A be of rank 1. Then $A \leq B$ if $A^a \leq B^a$ for some a > 1 [13].

X and *Y* in *B*(5) are said to be *unitarily equivalent* or *unitarily similar* and denoted by $X \stackrel{u}{\simeq} Y$ if there is a unitary *U* such that $Y = U^*XU$. $O(X) := \{Y \in B(5): X \stackrel{u}{\simeq} Y\}$ is called the *unitary orbit* of *X*. For *A* and *B* in $B_h(5)$ we write $A \stackrel{u}{\leqslant} B$ if there is a unitary *U* such that $A \leq U^*BU$. Likewise, we write $A \stackrel{u}{\preccurlyeq} B$ if there is a unitary *U* such that $A \leq U^*BU$. It is evident that $A \stackrel{u}{\leqslant} B$ if there is *u* unitary *U* such that $A \stackrel{u}{\leqslant} B$ if and only if there is $B' \in O(B)$ such that $A \leq B'$ (or $A \stackrel{u}{\preccurlyeq} B'$).

E-mail addresses: uchiyama@riko.shimane-u.ac.jp (M. Uchiyama), mseto@riko.shimane-u.ac.jp (M. Seto).

¹ The authors were supported in part by (JSPS) KAKENHI 21540181 and 23740106.

¹⁶³¹⁻⁰⁷³X/\$ – see front matter © 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences. http://dx.doi.org/10.1016/j.crma.2013.04.024

To illuminate the importance of the concept $\stackrel{u}{\leqslant}$ in studying self-adjoint operators, we consider the case of dim $\mathfrak{H} = n$; in this case we use conventional symbol H_n instead of $B_h(\mathfrak{H})$. Let $\lambda_1(A) \ge \cdots \ge \lambda_n(A)$ be eigenvalues of $A \in H_n$, where each eigenvalue is repeated as much as its multiplicity. Then $A \le B$ implies $\lambda_i(A) \le \lambda_i(B)$ (i = 1, 2, ..., n) (e.g., see [2]). We therefore obtain:

(i) $A \stackrel{u}{\leqslant} B$ and $B \stackrel{u}{\leqslant} A$ if and only if $A \stackrel{u}{\simeq} B$. (ii) If $A \stackrel{u}{\leqslant} B$, then $A \stackrel{u}{\preccurlyeq} B$.

The purpose of this paper is to study these facts for *A* and *B* in $B_h(\mathfrak{H})$. In [8] it was mentioned that if $0 \le A \le U^*AU$, then $A = U^*AU$; but we will give a counterexample. We do not know if (ii) remains true for *A* and *B* in $B_h(\mathfrak{H})$. However, Kosaki [7], in virtue of an inequality by Ando [1], has shown the relevant inequality:

$$A \leqslant B \implies \exp(A) \stackrel{\sim}{\leqslant} \exp(B). \tag{1}$$

We will extend this in a different way, and then deal with a positive linear map.

2. Inequalities

We first consider (i) for *A* and *B* in $B_h(\mathfrak{H})$. It is evident that $A \stackrel{u}{\simeq} B$ implies $A \stackrel{u}{\leqslant} B$ and $B \stackrel{u}{\leqslant} A$. But the converse implication does not hold (e.g., see [9]). We now show that even stronger condition $A \stackrel{u}{\preccurlyeq} B$, $B \stackrel{u}{\preccurlyeq} A$ does not necessarily imply $A \stackrel{u}{\simeq} B$ by giving a counterexample.

Example 1. Let *A* and *B* be diagonal operators on $\ell^2(\mathbf{Z})$ defined by

$$A = diag(\dots, 0, \overset{0}{0}, 1, 2, 2, \dots), \qquad B = diag(\dots, 0, \overset{0}{1}, 1, 2, 2, \dots),$$

and let *U* be the bilateral shift on $\ell^2(\mathbf{Z})$.

In this case, we have:

$$U^*AU = diag(\dots 0, 0, \overset{0}{1}, 2, 2, \dots).$$

We hence get $A \preccurlyeq B \preccurlyeq U^*AU$. This means $A \preccurlyeq B \preccurlyeq A$. But since the dimensions of eigenspaces of A - 1 and B - 1 are different, A and B are not unitarily equivalent. This means $A \preccurlyeq U^*AU$ but $A \neq U^*AU$; this is a counterexample for Theo-

rem 2.13 of [8]. Incidentally, $P := diag(\dots 0, \overset{0}{1}, 1, \dots)$ is a projection and $P \preccurlyeq U^*PU$ but $P \neq U^*PU$. This is a counterexample for Lemma 2.10 of [8] as well.

We next consider (1). In Theorem 2.8 of [8] it was tried to extend this; but the proof was as follows:

For $0 < A \leq B$ and for any r > 0 there is a unitary V such that $f(g(A)^r) \leq V^* f(g(B)^r)V$. $0 \leq A \leq B$ ensures $0 < A + \epsilon \leq B + \epsilon$ for all $\epsilon > 0$, so for any r > 0, there is a unitary V such that $f(g(A + \epsilon)^r) \leq V^* f(g(B + \epsilon)^r)V$. By letting $\epsilon \to 0$, $f(g(A)^r) \leq V^* f(g(B)^r)V$; and hence $f(g(A)^r) \leq f(g(B)^r)$ for any operator convex function f and any operator monotone function g.

But V depends on $\epsilon > 0$, so authors should have referred to the limit of V; it is not obvious whether or not a sequence

of unitary operators converges to a non-trivial unitary operator. In this sense, the proof is not complete.

From now on, we take a different approach to this problem. We start with a characterization of $A \stackrel{u}{\leq} B$ for $A, B \ge 0$.

Lemma 1. Let $A, B \ge 0$. Then $A \stackrel{u}{\leqslant} B$ if and only if there is a contraction X such that $A = X^*BX$ and dim $\mathbf{N}(B^{1/2}X) = \dim \mathbf{N}(X^*B^{1/2}) \le \infty$, where $\mathbf{N}(X) = \{\mathbf{x}: X\mathbf{x} = \mathbf{0}\}$.

Proof. Assume there is a unitary *U* such that $A \leq U^*BU$. Then there is a contraction *Y* satisfying $A^{1/2} = YU^*B^{1/2}U$. This implies $A = YU^*BUY^*$, because $A^{1/2}$ is self-adjoint. Putting $X = UY^*$, we clearly get $A = X^*BX$, $||X|| \leq 1$, and:

$$\dim \mathbf{N}(X^*B^{1/2}) = \dim \mathbf{N}(YU^*B^{1/2}) = \dim \mathbf{N}(A^{1/2}) = \dim \mathbf{N}(B^{1/2}X)$$

We next show the converse implication. Let $B^{1/2}X = V|B^{1/2}X|$ be the polar decomposition. By the assumption, *V* has a unitary extension *U*. Since $A^{1/2} = |B^{1/2}X|$, in virtue of $V|B^{1/2}X| = U|B^{1/2}X|$, we have:

$$UAU^* = U |B^{1/2}X| |B^{1/2}X| U^* = B^{1/2}XX^*B^{1/2} \leq B,$$

which yields $A \leq U^* BU$. This is the required result. \Box

We remark that if *B* is invertible, then the condition on the null spaces in Lemma 1 reduces to dim $\mathbf{N}(X) = \dim \mathbf{N}(X^*)$, which always holds if *X* is self-adjoint or invertible. The geometric mean:

$$B^{-1}#A := B^{-1/2} (B^{1/2}AB^{1/2})^{1/2}B^{-1/2}$$

satisfies $A = (B^{-1}#A)B(B^{-1}#A)$. We therefore get:

Example 2. Suppose *A*, $B \ge 0$ and *B* is invertible. Then:

$$B^{-1}\#A\leqslant 1 \implies A \stackrel{u}{\leqslant} B.$$

A continuous function g(t) defined on an interval I is called an operator convex function if $g(sA + (1 - s)B) \leq sg(A) + (1 - s)B$ (1-s)g(B) for 0 < s < 1 and for A and B with spectra in I. A continuous function f(t) defined on I is called an operator *monotone* function if $f(A) \leq f(B)$ whenever $A \leq B$. A power function t^a is operator monotone on $[0, \infty)$ if $0 < a \leq 1$, and operator convex there if $1 \le a \le 2$. It is clear that $A \le B$ implies $f(A) \le f(B)$ for an operator monotone function f(t).

Proposition 1. Let $g_i(t) \ge 0$ (i = 1, 2, ..., n) be an operator monotone function or an operator convex function on $[0, \infty)$ with $g_i(0) = 0$. Let $A, B \ge 0$ and B be invertible. Then $0 \le A \le B$ implies:

$$(g_n \circ \cdots \circ g_1)(A) \stackrel{\circ}{\leqslant} (g_n \circ \cdots \circ g_1)(B),$$

where \circ is the symbol of composition. In particular, $A^a \stackrel{u}{\leqslant} B^a$ for every a > 0.

Proof. We first show $g_1(A) \stackrel{u}{\leqslant} g_1(B)$. This is clear if $g_1(t)$ is operator monotone, so we assume that $g_1(t)$ is operator convex. We may also assume $g_1(t)$ is not a constant. By Lemma 1 there is a contraction X such that $A = X^*BX$ and $\dim \mathbf{N}(X) = \dim \mathbf{N}(X^*)$. By the Hansen–Pedersen inequality [5]:

$$g_1(A) = g_1(X^*BX) \leqslant X^*g_1(B)X.$$

Since $0 \leq g_1(t)$ is strictly increasing, $g_1(B)$ is invertible as well. By Lemma 1:

$$X^*g_1(B)X \stackrel{u}{\leqslant} g_1(B).$$

We therefore get $g_1(A) \stackrel{u}{\leq} g_1(B)$. By induction, we get the required result. Substituting power functions for $g_i(t)$ yields the last inequality. \Box

We remark that the last statement does not imply that there is a common unitary U such that $A^a \leq U^* B^a U$ for every a > 0, namely $A \stackrel{u}{\preccurlyeq} B$. To extend this proposition, we use a few symbols induced in [16]. Let I be a right open interval, namely I = (a, b) or I = [a, b), and $\mathbb{P}_{+}^{-1}(I)$ the set of all increasing and continuous functions h(t) on I such that $\lim_{t \to a+0} h(t) = 0$, $\lim_{t\to h-0} h(t) = \infty$ and h^{-1} is operator monotone. Let $\mathbb{LP}_+(I)$ denote the set of all functions h(t) such that h(t) > 0 on the interior of *I* and log h(t) is operator monotone there. e^t obviously belongs to $\mathbb{P}_+^{-1}(-\infty,\infty) \cap \mathbb{LP}_+(-\infty,\infty)$. In Theorem 2.11 of [16] (also see [14,15]), it was shown that $\mathbb{LP}_+(I) \cdot \mathbb{P}_+^{-1}(I) \subseteq \mathbb{P}_+^{-1}(I)$; hence for $a \ge 1, b > 0$: $t^a e^{bt} \in \mathbb{P}_+^{-1}[0, \infty) \cap \mathbb{LP}_+[0, \infty)$. If g(t) is an operator convex function on $[0, \infty)$ with g(0) = 0, then: $g(t) \in \mathbb{P}^{-1}_+[0, \infty) \cap \mathbb{LP}_+[0, \infty)$ since g(t)/t is operator monotone. Moreover, in Corollary 4.3 of [16] it was proved that: if $h \in \mathbb{P}^{-1}_+(I) \cap \mathbb{LP}_+(I)$, $p \ge 1$, r > 0 and $0 < \alpha \le \frac{r}{p+r}$ then for A, B with $\sigma(A)$, $\sigma(B) \subset I$

$$A \leqslant B \quad \Rightarrow \quad \begin{cases} \left(h(A)^{\frac{r}{2}}h(A)^{p}h(A)^{\frac{r}{2}}\right)^{\alpha} \leqslant \left(h(A)^{\frac{r}{2}}h(B)^{p}h(A)^{\frac{r}{2}}\right)^{\alpha}, \\ \left(h(B)^{\frac{r}{2}}h(A)^{p}h(B)^{\frac{r}{2}}\right)^{\alpha} \leqslant \left(h(B)^{\frac{r}{2}}h(B)^{p}h(B)^{\frac{r}{2}}\right)^{\alpha}. \end{cases}$$
(2)

We are now in the position to state the main result.

Theorem 1. Let $h \in \mathbb{P}^{-1}_+(I) \cap \mathbb{LP}_+(I)$ and $\sigma(A), \sigma(B) \subset I$. Suppose h(B) is invertible. Then, for every a > 0:

$$A \stackrel{u}{\leqslant} B \implies h(A)^a \stackrel{u}{\leqslant} h(B)^a.$$
⁽³⁾

In particular, if $0 \le A \le B$ and B is invertible, then for a > 0, $b \ge 0$:

$$A^{a}e^{bA} \stackrel{u}{\leqslant} B^{a}e^{bB}; \tag{4}$$

moreover, for $a_i > 0$, $b_i \ge 0$, $c_i \ge 0$:

n

$$\sum_{i=1}^{n} c_i A^{a_i} e^{b_i A} \stackrel{u}{\leqslant} \sum_{i=1}^{n} c_i B^{a_i} e^{b_i B}.$$
(5)

Proof. We first show (3) in the case a = 1. Suppose $U^*AU \leq B$. Put p = r = 1 and $\alpha = 1/2$ in the second inequality of (2) to get: $(h(B)^{\frac{1}{2}}h(U^*AU)h(B)^{\frac{1}{2}})^{\frac{1}{2}} \leq h(B)$, which means $h(B)^{-1}#h(U^*AU) \leq 1$. By Example 2 we have $h(U^*AU) \leq h(B)$, which implies (3). In the case of a > 1, $h(t)^a$ itself belongs to $\mathbb{P}_+^{-1}(I) \cap \mathbb{LP}_+(I)$. In the case of 0 < a < 1, $h(A)^a \leq h(B)^a$ follows from $h(A) \leq h(B)$, because t^a is operator monotone. We have consequently shown (3). Since $te^{\frac{b}{a}t} \in \mathbb{P}_+^{-1}[0, \infty) \cap \mathbb{LP}_+[0, \infty)$, (3) deduces (4). To show (5) put $a = \max\{1, a_1, \dots, a_n\}$ and $b = \max\{b_i: 1 \leq i \leq n\}$. Then by (4) there is a unitary U such that $A^a e^{bA} \leq U^* B^a e^{bB} U$. Since for each i there is an operator monotone function ϕ_i such that $t^{a_i} e^{b_i t} = \phi_i(t^a e^{bt})$ (see Theorem 2.11 of [16]) we obtain:

$$A^{a_i}e^{b_iA} = \phi_i(A^a e^{bA}) \leqslant \phi_i(U^*B^a e^{bB}U) = U^*B^{a_i}e^{b_iB}U$$

for each *i*. This yields (5) since $c_i \ge 0$. \Box

We remark that (3) involves (1) and Proposition 1, because $e^t \in \mathbb{P}^{-1}_+(-\infty,\infty) \cap \mathbb{LP}_+(-\infty,\infty)$ and $g_i(t) \in \mathbb{P}^{-1}_+[0,\infty) \cap \mathbb{LP}_+[0,\infty)$.

Let ϕ be a unital positive linear map on $B_h(\mathfrak{H})$. Then, Choi [4] has shown that for $A \ge 0$ and an operator convex function $g(t) \ge 0$ on $(0, \infty)$:

$$g(\phi(A)) \leqslant \phi(g(A)). \tag{6}$$

In particular, $\phi(A)^2 \leq \phi(A^2)$ [6]. Of course, $\phi(A)^a \leq \phi(A^a)$ does not necessarily hold for a > 2. However we have the following:

Proposition 2. Let ϕ be a unital positive linear map, and let $g_i(t) \ge 0$ be operator convex functions on $[0, \infty)$ with $g_i(0) = 0$. Then for invertible $A \ge 0$:

$$(g_n \circ \cdots \circ g_1)(\phi(A)) \stackrel{u}{\leqslant} \phi((g_n \circ \cdots \circ g_1)(A)).$$

In particular, for a > 2:

$$(\phi(A))^a \stackrel{u}{\leqslant} \phi(A^a).$$

Proof. By (6) we first get $g_1(\phi(A)) \leq \phi(g_1(A))$. Since $\phi(g_1(A))$ is invertible, it follows from Proposition 1 and (6) that:

$$g_2(g_1(\phi(A))) \stackrel{"}{\leqslant} g_2(\phi(g_1(A))) \leqslant \phi(g_2(g_1(A)))$$

This implies that $g_2(g_1(\phi(A))) \stackrel{u}{\leqslant} \phi(g_2(g_1(A)))$. By induction, we obtain the desired result. \Box

We remark that Bourin and Lee [3] have shown that if *g* is a monotone convex function on **R** and *A* is a bounded self-adjoint operator, then for an arbitrary $0 < r \in \mathbf{R}$:

$$g(\phi(A)) \stackrel{a}{\leqslant} \phi(g(A)) + rI$$

11

Acknowledgement

The authors express their thanks to the referee for giving them valuable comments.

References

- [1] T. Ando, On some operator inequalities, Math. Ann. 279 (1987) 157-159.
- [2] R. Bhatia, Matrix Analysis, Springer, 1996.
- [3] J.C. Bourin, E.Y. Lee, Unitary orbits of Hermitian operators with convex or concave functions, Bull. Lond. Math. Soc. 44 (2012) 1085–1102.
- [4] M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974) 565–574.
- [5] F. Hansen, G.K. Pedersen, Jensen's inequality for operators and Löwner's theorem, Math. Ann. 258 (1982) 229-241.
- [6] R.V. Kadison, A generalized Schwarz inequality and algebraic invariants for operator algebras, Ann. of Math. 56 (1952) 494–503.
- [7] H. Kosaki, On some trace inequalities, Proc. Centre Math. Appl. Austral. Nat. Univ. 29 (1992) 129-134.
- [8] M.S. Moslehian, S.M.S.N. Sales, H. Najafi, On the binary relation \leq_u on self-adjoint Hilbert space operators, C. R. Acad. Sci. Paris, Ser. I 350 (2012) 407–410.
- [9] T. Okayasu, Y. Ueta, A condition under which $B = A = U^*BU$ follows from $B \leq A \leq U^*BU$, Proc. Amer. Math. Soc. 135 (5) (2007) 1399–1403.
- [10] M.P. Olson, The selfadjoint operators of a von Neumann algebra form a conditionally complete lattice, Proc. Amer. Math. Soc. 28 (1971) 537-544.
- [11] M. Uchiyama, Commutativity of selfadjoint operators, Pacific J. Math. 161 (1993) 385-392.
- [12] M. Uchiyama, Perturbation and commutativity of unbounded selfadjoint operators, Bull. Fukuoka Univ. Ed. III 44 (1995) 15-20.
- [13] M. Uchiyama, Strong monotonicity of operator functions, Integral Equations Operator Theory 37 (2000) 95–105.
- [14] M. Uchiyama, Operator monotone functions which are defined implicitly and operator inequalities, J. Funct. Anal. 175 (2000) 330-347.
- [15] M. Uchiyama, M. Hasumi, On some operator monotone functions, Integral Equations Operator Theory 42 (2002) 243-251.
- [16] M. Uchiyama, A new majorization between functions, polynomials, and operator inequalities II, J. Math. Soc. Japan 60 (2008) 291-310.