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RESUME

u
Pour deux opérateurs autoadjoints bornés A et B, nous écrirons A < B s'il existe
un opérateur unitaire U tel que A < U*BU. Kosaki (1992) a montré dans [7] que

u
A < B = exp(A) < exp(B). Cette note étend ce résultat. En particulier nous montrons que
pour les fonctions du type f(t) = ZL] cit%ebit avec des coefficients a;, b;, ¢; positifs,

u u
ona0< A<B= f(A) < f(B). Ceci permet d’obtenir des inégalités similaires pour les
applications linéaires positives unitales.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

Let B($)) be the algebra of all bounded operators on a separable Hilbert space $) and Bj($)) the subset of all self-adjoint
operators. For A, B € B (), we write A < B if (AX,X) < (Bx, X) for every x € $. Let {E}, {F¢} be the spectral families for
A, B € By(). Then A < B clearly implies dim E¢$) > dim F;$). We write A < B if E; > F; for every t, and this order is called
spectral order. In [10] it was shown that if A, B >0, then A < B if and only if A? < B? for every a > 0. In [11,12] this concept
was extended to (unbounded) self-adjoint operators A and B bounded from below and it was shown that A < B if and only
if e~ < e~tA for every t > 0. Let 0 < A < B, and let B — A be of rank 1. Then A < B if A? < B? for some a > 1 [13].

X and Y in B($)) are said to be unitarily equivalent or unitarily similar and denoted by X 2 Y if there is a unitary U such
that Y =U*XU. O(X) :={Y € B($): X ~ Y} is called the unitary orbit of X. For A and B in By()) we write A % B if there
is a unitary U such that A < U*BU. Likewise, we write A ; B if there is a unitary U such that A < U*BU. It is evident that
A % B (or A i B) if and only if there is B’ € O(B) such that A < B’ (or A< B’).
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To illuminate the importance of the concept % in studying self-adjoint operators, we consider the case of dim$) =n;
in this case we use conventional symbol H, instead of Bn($)). Let A1(A) > --- > A,(A) be eigenvalues of A € H,, where
each eigenvalue is repeated as much as its multiplicity. Then A < B implies 1;(A) < Ai(B) (i=1,2,...,n) (e.g., see [2]).
We therefore obtain:

u u

u
(i) A< B and B < A if and only if A~ B.
u u
(ii) If A< B, then A < B.

The purpose of this paper is to study these facts for A and B in By ($)). In [8] it was mentioned that if 0 < A < U*AU,
then A =U*AU; but we will give a counterexample. We do not know if (ii) remains true for A and B in Bj($)). However,
Kosaki [7], in virtue of an inequality by Ando [1], has shown the relevant inequality:

u
A<B = exp(A) <exp(B). (1)

We will extend this in a different way, and then deal with a positive linear map.
2. Inequalities

u u
We first consider (i) for A and B in Bn($)). It is evident that A ~B implies A < B and B < A. But the converse implication
u u
does not hold (e.g., see [9]). We now show that even stronger condition A < B, B < A does not necessarily imply A ~ B by
giving a counterexample.

Example 1. Let A and B be diagonal operators on ¢2(Z) defined by

0 0
A =diag(...0,0,1,2,2,...), B =diag(...0,1,1,2,2,...),
and let U be the bilateral shift on ¢2(Z).

In this case, we have:

0
U*AU = diag(...0,0,1,2,2,...).

u
We hence get A < B < U*AU. This means A < B < A. But since the dimensions of eigenspaces of A—1 and B — 1 are
different, A and B are not unitarily equivalent. This means A < U*AU but A # U*AU; this is a counterexample for Theo-
0

rem 2.13 of [8]. Incidentally, P := diag(...0, { 1,...) is a projection and P < U*PU but P £ U*PU. This is a counterexample
for Lemma 2.10 of [8] as well.

We next consider (1). In Theorem 2.8 of [8] it was tried to extend this; but the proof was as follows:

For 0 < A < B and for any r > 0 there is a unitary V such that f(g(A)") < V*f(g(B)')V.0< A< Bensures0<A+e<B+e¢
for all € > 0, so for any r > 0, there is a unitary V such that f(g(A+ €)") < V*f(g(B + €)")V. By letting € — 0, f(g(A)") <

u

V*f(g(B)")V; and hence f(g(A)") < f(g(B)") for any operator convex function f and any operator monotone function g.
But V depends on € > 0, so authors should have referred to the limit of V; it is not obvious whether or not a sequence
of unitary operators converges to a non-trivial unitary operator. In this sense, the proof is not complete.

u
From now on, we take a different approach to this problem. We start with a characterization of A < B for A, B > 0.

u
Lemma 1. Let A,B > 0. Then A < B if and only if there is a contraction X such that A = X*BX and dimN(BVZX) =
dimN(X*B1/2) < co, where N(X) = {x: Xx=0}.

Proof. Assume there is a unitary U such that A < U*BU. Then there is a contraction Y satisfying A'/2 = YU*B/2U. This
implies A= YU*BUY*, because A!/? is self-adjoint. Putting X = UY*, we clearly get A= X*BX, || X|| <1, and:

dimN(X*B'/2) = dimN(YU*B"/?) = dimN(A'/?) = dimN(B'/2X).

We next show the converse implication. Let B/2X = V|B/2X| be the polar decomposition. By the assumption, V has a
unitary extension U. Since Al/2 = |B1/2X|, in virtue of V|B/2X| = U|B'/2X|, we have:

UAU* =U|BY2X||B2X|U* = BY/2XX*B'/? < B,
which yields A < U*BU. This is the required result. O

We remark that if B is invertible, then the condition on the null spaces in Lemma 1 reduces to dimN(X) = dimN(X*),
which always holds if X is self-adjoint or invertible. The geometric mean:
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B~ l#A = B—1/2(31/2A31/2)1/23—1/2
satisfies A = (B~ '#A)B(B~1#A). We therefore get:

Example 2. Suppose A, B >0 and B is invertible. Then:
u
B '#A<1 =— A<B.

A continuous function g(t) defined on an interval I is called an operator convex function if g(sA + (1 —s)B) <sg(A) +
(1 —s)g(B) for 0 <s <1 and for A and B with spectra in I. A continuous function f(t) defined on I is called an operator
monotone function if f(A) < f(B) whenever A < B. A power function t? is operator monotone on [0, o0) if 0 <a < 1, and

u u
operator convex there if 1 <a < 2. It is clear that A < B implies f(A) < f(B) for an operator monotone function f(t).

Proposition 1. Let gj(t) > 0 (i = 1,2,...,n) be an operator monotone function or an operator convex function on [0, co) with
u
gi(0) =0. Let A, B > 0 and B be invertible. Then 0 < A < B implies:

(gno--0g1)(A) < (gro-o0g(B),

u
where o is the symbol of composition. In particular, A% < B? for every a > 0.

u
Proof. We first show gq(A) < g1(B). This is clear if g;(t) is operator monotone, so we assume that gi(t) is operator
convex. We may also assume gq(t) is not a constant. By Lemma 1 there is a contraction X such that A = X*BX and
dimN(X) = dimN(X*). By the Hansen-Pedersen inequality [5]:

g1(A) = g1(X*BX) < X*g1(B)X.

Since 0 < g1(t) is strictly increasing, gq(B) is invertible as well. By Lemma 1:
u
X*g1(B)X < g1(B).

u
We therefore get gq(A) < g1(B). By induction, we get the required result. Substituting power functions for g;(t) yields the
last inequality. O

We remark that the last statement does not imply that there is a common unitary U such that A < U*B?U for every

a > 0, namely A —\u< B. To extend this proposition, we use a few symbols induced in [16]. Let I be a right open interval, namely
I =(a,b) or I =[a,b), and IP’:L] (I) the set of all increasing and continuous functions h(t) on I such that lim;_440h(t) =0,
lim;_,p_o h(t) = 0o and h~! is operator monotone. Let LP_ (I) denote the set of all functions h(t) such that h(t) > 0 on the
interior of I and logh(t) is operator monotone there. e! obviously belongs to Pll(—oo, 00) NLP4 (—00, 00). In Theorem 2.11
of [16] (also see [14,15]), it was shown that IL]P@(I)-]P’?(I) - P;l (I); hence fora>1, b > 0: t%’ e P;l [0, c0) NLP4 [0, c0).
If g(t) is an operator convex function on [0, co) with g(0) =0, then: g(t) € IP’;l[O, o0) NLLIP4 [0, 0o) since g(t)/t is operator
monotone. Moreover, in Corollary 4.3 of [16] it was proved that:

ifh eIP’:L] (DNLP (), p=1,r>0and0 < < # then for A, Bwitho (A), o (B) C I

P (h(A)2h(A)Ph(A)2)* < (h(A)2h(B)Ph(A)?)®, 2
h (h(B)2h(A)Ph(B)?)" < (h(B)2h(B)Ph(B)?).
We are now in the position to state the main result.
Theorem 1. Let h € IP’:J () NLLP4(I) and o (A), o (B) C I. Suppose h(B) is invertible. Then, for every a > 0:
u u
A<B = h(A*<h(B)". (3)
In particular, if 0 < A % B and B is invertible, then fora > 0, b > 0:
Aaeb/\ % BaebB; (4)

moreover, fora; > 0,b; >0, ¢; > 0:

n n

u
E ciA%ebiA < E ciBUebiB, (5)
i=1 i=1
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Proof. We first show (3) in the case a =1. Suppose U*AU < B. Put p=r=1 and @ = 1/2 in the second inequality of (2) to
u

get: (h(B)2h(U*AU)h(B)?)? < h(B), which means h(B)~'#h(U*AU) < 1. By Example 2 we have h(U*AU) < h(B), which
implies (3). In the case of a > 1, h(t)" itself belongs to ]P:1 (D NLP4(I). In the case of 0 <a < 1, h(A)* % h(B)“ follows

from h(A) % h(B), because t* is operator monotone. We have consequently shown (3). Since tegt € IP’;l[O, 00) N LIP4 [0, 00),
(3) deduces (4). To show (5) put a = max{1,ai,...,a;} and b = max{b;: 1 <i < n}. Then by (4) there is a unitary U
such that A%P4 < U*B%PBU. Since for each i there is an operator monotone function ¢; such that t%ebit = ¢;(t%"") (see
Theorem 2.11 of [16]) we obtain:

Aa,-eb,-A — ¢i(AaebA) < ¢1‘(U*BaebBU) — U*BaiebiBU
for each i. This yields (5) since ¢c; > 0. O

We remark that (3) involves (1) and Proposition 1, because e' € ]P’:Ll(—oo, 00) N LP4 (—o0, 00) and gi(t) € IP’:L][O, o) N
LP.,[0, 00).

Let ¢ be a unital positive linear map on By ($)). Then, Choi [4] has shown that for A > 0 and an operator convex function
g(t) >0 on (0, 00):

g(e (M) < o(g(A)). (6)

In particular, ¢(A)? < ¢(A2) [6]. Of course, ¢(A)? < ¢(A?) does not necessarily hold for a > 2. However we have the
following:

Proposition 2. Let ¢ be a unital positive linear map, and let g;(t) > 0 be operator convex functions on [0, co) with g;(0) = 0. Then
for invertible A > 0:

(gn o081 ($(A) <P((8n o0 g)(A).
In particular, fora > 2:

u
(0 (A)* <o (A%).
Proof. By (6) we first get g1(¢(A)) < ¢(g1(A)). Since ¢(g1(A)) is invertible, it follows from Proposition 1 and (6) that:

(21(0(A)) < £2(¢(81(A)) < B (22(21(W))).

u

This implies that g(g1(¢(A))) < ¢(g2(g1(A))). By induction, we obtain the desired result. 0O

We remark that Bourin and Lee [3] have shown that if g is a monotone convex function on R and A is a bounded
self-adjoint operator, then for an arbitrary 0 <r € R:

2(p(A) < p(g(A) +11.
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