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In a previous work, it was shown how the Cauchy–Green tensor field C := ∇ΦT ∇Φ ∈
W 2,s(Ω;S3

>), s > 3/2, can be considered as the sole unknown in the homogeneous
Dirichlet problem of nonlinear elasticity posed over a domain Ω ⊂ R

3, instead of the
deformation Φ ∈ W 3,s(Ω;R3) in the usual approach. The purpose of this Note is to show
that the same approach applies as well to the Dirichlet–Neumann problem. To this end, we
show how the boundary condition Φ = Φ0 on a portion Γ0 of the boundary of Ω can be
recast, again as boundary conditions on Γ0, but this time expressed only in terms of the
new unknown C ∈ W 2,s(Ω;S3

>).
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Dans un travail antérieur, on a montré comment le champ C := ∇ΦT ∇Φ ∈ W 2,s(Ω;S3
>),

s > 3/2, des tenseurs de Cauchy–Green peut être considéré comme la seule inconnue dans
le problème de Dirichlet homogène pour l’élasticité non linéaire posé sur un domaine
Ω ⊂ R

3, au lieu de la déformation Φ ∈ W 3,s(Ω;R3) dans l’approche habituelle. L’objet
de cette Note est de montrer que la même approche s’applique aussi bien au problème de
Dirichlet–Neumann. À cette fin, nous montrons comment la condition aux limites Φ = Φ0
sur une portion Γ0 de la frontière de Ω peut être ré-écrite, à nouveau sous forme de
conditions aux limites sur Γ0, mais exprimées cette fois uniquement en fonction de la
nouvelle inconnue C ∈ W 2,s(Ω;S3

>).
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries

Greek indices, resp. Latin indices, range over the set {1,2}, resp. {1,2,3}. The summation convention with respect to
repeated indices is used in conjunction with these rules.

The notations S
3, S3

> , and O
3+ , respectively designate the space of all symmetric matrices, the set of all positive-definite

symmetric matrices, and the set of all proper orthogonal matrices, of order 3. The notation f |A designates the restriction
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to the set A of a function f defined over a set that contains A. Given a normed vector space X , the notation L2
sym(X × X)

designates the space of all continuous symmetric bilinear forms defined on the product X × X .
The Euclidean norm, the exterior product, the dyadic product, and the inner product of vectors u,v ∈R

3 are respectively
denoted |u|, u∧v, u⊗v, and u ·v. The inner product of two m×m tensors e and τ is denoted and defined by e : τ = tr(eT τ ).

The set of k-times continuously differentiable functions from an open subset U ⊂ X of a normed vector space X into
a subset V ⊂ Y of a normed vector space Y is denoted Ck(U ; V ). The set Ck(U ; V ) is defined as the subset of the space
Ck(U ; V ) that consists of all functions f ∈ Ck(U ; V ) that, together with all their partial derivatives of order � k, possess
continuous extensions to the closure U of U , the extension of f being in addition with values in V .

Throughout this Note, the notation Ω designates a bounded and connected open subset of R
3, whose boundary Γ :=

∂Ω is of class C4. This means that there exists a finite number N of open sets ωk ⊂ R
2 and of injective immersions

θk ∈ C4(ωk;R3), k = 1,2, . . . , N , such that Γ = ⋃N
k=1 θk(ωk). It also implies that there exists ε > 0 such that the mappings

Θk ∈ C3(U k;R3) defined by:

Θk(y, y3) := θk(y) + y3ak
3(y) for all (y, y3) ∈ Uk := ωk × (−ε, ε),

where ak
3 denotes the unit inner normal vector field along the portion θk(ωk) of the boundary of Ω , are C3-diffeomorphisms

onto their image (cf. [3, Theorem 4.1-1]). Thus the mappings {Θk; 1 � k � N} form an atlas of local charts for the set
Ωε := {x ∈ Ω; dist(x,Γ ) < ε} ⊂ Ω , while the mappings {θk; 1 � k � N} form an atlas of local charts for the surface
Γ = ∂Ω ⊂ R

3. When no confusion should arise, we will drop the explicit dependence on k for notational brevity.
Generic points in ω, in U = ω × (−ε, ε), and in Ω , are respectively denoted y = (yα), (y, y3), and x = (xi). Partial

derivatives with respect to yi are denoted ∂i := ∂/∂ yi , while partial derivatives with respect to xi are denoted ∂/∂xi . The
gradient of a vector field Φ = (Φi) : Ω → R

3 is the 3 × 3 matrix field denoted and defined by ∇Φ := (∂Φi/∂x j), with i as
its row index.

The tangent plane TxΓ of the surface Γ ⊂ R
3 at the point x ∈ Γ will be identified with the subspace of R

3 spanned
by the vectors aα(y) := ∂αθ(y), where y = θ−1(y). The vectors aβ(y) of the dual basis of the tangent plane are those
defined by the relations aβ(y) · aα(y) = δ

β
α . The unit inner normal vector to TxΓ is defined by a3(y) = a3(y) := (a1(y) ∧

a2(y))/|a1(y) ∧ a2(y)| (to ensure that the vector a3(y) points toward the interior of Ω , it suffices to exchange if necessary
the coordinates y1 and y2).

The unit outer normal vector field along the boundary Γ of Ω is denoted n; thus n(x) = −a3(y), y = θ−1(x), in a local
chart.

The tangent space TxR
3 of the Euclidean space R

3 at the point x ∈ R
3 will be identified with R

3 by means of the basis
formed by the vectors g i(y, y3) := ∂iΘ(y, y3), where (y, y3) = Θ−1(x). The vectors of the dual basis are those defined by
the relations g j(y, y3) · g i(y, y3) = δ

j
i . Note that:

gα(y, y3) = aα(y) + y3∂αa3(y) and g3(y, y3) = a3(y).

Let Γ0 ⊂ Γ denote a relatively open subset of Γ . Since Γ is a manifold of class C4, so is Γ0. It follows that functions, vector
fields, and tensor fields, of class Ck , 0 � k � 4, can be defined on Γ0. The Lebesgue and Sobolev spaces on Γ0 used in this
paper are defined as in, e.g., Aubin [1].

Spaces of vector fields, resp. symmetric tensor fields, with values in R
3, resp. in S

3, are defined by using a given Cartesian
basis {êi

, 1 � i � 3} in R
3, resp. the basis { 1

2 (êi ⊗ ê j + ê j ⊗ êi
),1 � i, j � 3} in S

3. They will be denoted by bold letters and
by capital Roman letters, respectively.

Given an orientation-preserving immersion Φ : Ω → R
3 of class C1, that is, a mapping Φ ∈ C 1(Ω) := C1(Ω;R3) such that

det(∇Φ(x)) > 0 for all x ∈ Ω , the Cauchy–Green, or metric, tensor field induced by Φ is the field C := ∇ΦT ∇Φ ∈ C0(Ω;S3
>).

Each Cauchy–Green tensor field C ∈ C0(Ω;S3
>) defines a Riemannian metric on Ω by means of the bilinear forms:

(
C(x)

)
(u, v) := uT C(x)v for all (u, v) ∈ R

3 ×R
3, x ∈ Ω.

Complete proofs and complements will be found in [6].

2. Fundamental forms of the surface Γ0

Given an orientation-preserving immersion Φ ∈ C 2(Ω), the restriction ϕ := Φ|Γ0 ∈ C 2(Γ 0) is an immersion of Γ 0 into
R

3. The first and second fundamental forms induced by ϕ are then respectively defined in each local chart by:

a(ϕ) ◦ θ = aαβ(ϕ)aα ⊗ aβ, where aαβ(ϕ) := aα(ϕ) · aβ(ϕ),

b(ϕ) ◦ θ = bαβ(ϕ)aα ⊗ aβ, where bαβ(ϕ) := ∂αaβ(ϕ) · a3(ϕ) = −aα(ϕ) · ∂βa3(ϕ), (1)

the vector fields ai(ϕ) and a j(ϕ) being defined by:

aα(ϕ) := ∂α(ϕ ◦ θ), a3(ϕ) := a1(ϕ) ∧ a2(ϕ)
, and ai(ϕ) · a j(ϕ) = δ

j
i .
|a1(ϕ) ∧ a2(ϕ)|
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Given any metric tensor field C ∈ C1(Ω;S3
>), let:

N�(C) := C−1 N

[N T C−1 N]1/2
∈ C 1(Ω) and n�(C) := N�|Γ0 ∈ C 1(Γ 0),

where N ∈ C 3(Ω) denotes any C3-extension to Ω of the unit outer normal vector field n ∈ C 3(Γ ) to the boundary of Ω

defined in Section 1. Then n� := n�(C) is a unit outer normal vector field to Γ0 with respect to the metric C , that is:

n�(x)T C(x)t = 0 for all t ∈ TxΓ0, n�(x)T C(x)n�(x) = 1, and n�(x)T C(x)n(x) > 0.

Note that the fields N�(C) and n�(C) will be simply abbreviated to N� and n� , respectively, when no confusion should arise.
The first and second fundamental forms of the surface Γ0 induced by C are then the tensor fields:

a�(C) : x ∈ Γ0 → (
a�(C)

)
(x) ∈ L2

sym(TxΓ0 × TxΓ0),

b�(C) : x ∈ Γ0 → (
b�(C)

)
(x) ∈ L2

sym(TxΓ0 × TxΓ0),

defined in a local chart by:

a�(C) ◦ θ = a�
αβ(C)aα ⊗ aβ, where a�

αβ(C) := Cαβ |ω×{0},

b�(C) ◦ θ = b�
αβ(C)aα ⊗ aβ, where b�

αβ(C) := 1

2

(
Cαi∂β Ni

� + Cβi∂αNi
� + Ni

�∂iCαβ

)∣∣
ω×{0}, (2)

where the functions Cij and Ni
� are defined by the relations:

C ◦ Θ = Cij g i ⊗ g j and N� ◦ Θ = Ni
� g i in ω × [0, ε).

Note that the definition of the second fundamental form b�(C) is independent of the choice (induced by the choice of
an extension to Ω of the unit outer normal vector field along the boundary of Ω) of the extension N� of n� to Ω .

Remark. In other words, the fundamental forms a�(C) and b�(C) are the restrictions of the metric tensor C and of its Lie
derivative (cf., e.g., [2]) along the vector field N� to the subset TxΓ0 × TxΓ0 of TxR

3 × TxR
3, that is,

(
a�(C)

)
(x) = C(x)|TxΓ0×TxΓ0 and

(
b�(C)

)
(x) = 1

2
(LN� C)(x)|TxΓ0×TxΓ0 , x ∈ Γ0. �

The following theorem establishes the relation between the tensors fields defined by (1) and (2) when the vector field ϕ
and the tensor field C are induced by the same orientation-preserving immersion Φ : Ω → R

3.

Theorem 1. Given any orientation-preserving immersion Φ ∈ C 2(Ω), let C := ∇ΦT ∇Φ ∈ C1(Ω;S3
>) and ϕ := Φ|Γ0 ∈ C 2(Γ0). Then

a�(C) = a(ϕ) in C
1(Γ0) and b�(C) = b(ϕ) in C

0(Γ0).

Sketch of proof. Proving the theorem amounts to proving the equalities:

a�
αβ(C) = aαβ(ϕ) and b�

αβ(C) = bαβ(ϕ) in ω,

in any local chart. The first equality follows from direct computations. The second equality follows from the observation
that the relation C = ∇ΦT ∇Φ implies that the vector field g3 ∈ C 1(Ω) defined by the relations g3(x) · ∂i(Φ ◦ Θ)(x) at each
x ∈ Ω satisfies g3|Γ = N�|Γ . �
3. An intrinsic formulation of the boundary conditions

As a consequence of Theorem 1, we now show how a Dirichlet boundary condition imposed on the orientation-preserving
immersion Φ in the displacement-traction problem of nonlinear elasticity can be replaced by a boundary condition imposed on the
Cauchy–Green tensor field C . The set of proper isometries of R3 appearing in the next theorem is defined by:

Rig+
(
R

3) := {
χ : R3 →R

3; there exist c ∈R
3 and Q ∈O

3+ such that χ(x) = c + Q x, x ∈R
3}.
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Theorem 2. Let there be given an orientation-preserving immersion Φ0 ∈ C 2(Ω) and let ϕ0 := Φ0|Γ0 ∈ C 2(Γ0). If an orientation-
preserving immersion Φ ∈ C 2(Ω) satisfies the boundary condition:

Φ|Γ0 = Φ0|Γ0 in C 2(Γ0),

then the associated Cauchy–Green tensor field C = ∇ΦT ∇Φ ∈ C1(Ω;S3
>) satisfies the boundary conditions:

a�(C) = a(ϕ0) in C
1(Γ0) and b�(C) = b(ϕ0) in C

0(Γ0).

Assume in addition that Γ0 is connected. If the Cauchy–Green tensor field C = ∇ΦT ∇Φ ∈ C1(Ω;S3
>) associated with an

orientation-preserving immersion Φ ∈ C 2(Ω) satisfies the boundary conditions:

a�(C) = a(ϕ0) in C
1(Γ0) and b�(C) = b(ϕ0) in C

0(Γ0), (3)

then there exists a unique proper isometry χ ∈ Rig+(R3) such that the immersion (χ ◦ Φ) ∈ C 2(Ω) satisfies the boundary condition:

(χ ◦ Φ)|Γ0 = Φ0|Γ0 in C 2(Γ0). (4)

Sketch of proof. Let C = ∇ΦT ∇Φ ∈ C1(Ω;S3
>) and ϕ := Φ|Γ0 ∈ C 2(Γ0) be defined by a same orientation-preserving im-

mersion Φ ∈ C 2(Ω). Then Theorem 1 shows that:

a�(C) = a(ϕ) in C
1(Γ0) and b�(C) = b(ϕ) in C

0(Γ0).

The conclusion follows by combining these relations with the classical rigidity lemma on a surface (see, e.g., [3] or [4]),
which reads as follows: If two immersions ϕ ∈ C 2(Γ0) and ϕ0 ∈ C 2(Γ0) satisfy a(ϕ) = a(ϕ0) and b(ϕ) = b(ϕ0) on Γ0 , and if Γ0
is connected, then there exists a proper isometry χ ∈ Rig+(R3) such that ϕ = χ ◦ ϕ0. �
Remark. The assumption that Γ0 is connected is essential, as illustrated by the following counterexample: assume that Γ0 =
Γ0,1 ∪ Γ0,2 with Γ 0,1 ∩ Γ 0,2 = ∅. Let Φ0 = id and C = ∇ΦT ∇Φ ∈ C1(Ω;S3

>), where Φ ∈ C 2(Ω) is an orientation-preserving
immersion such that Φ = χ1 in a neighborhood of Γ0,1, and Φ = χ2 in a neighborhood of Γ0,2, where χ1 �= χ2 are two
proper isometries of R3. Then the boundary condition (3) is clearly satisfied, while (4) is not. �
4. Extension to Sobolev spaces

The results of Sections 2 and 3 can be extended to orientation-preserving immersions and Cauchy–Green tensor fields
with components in Sobolev spaces with sufficient regularity, so as to ensure that the fundamental forms induced by the
immersion ϕ and by the metric tensor field C are well defined and that the rigidity theorem on a surface (see the proof of
Theorem 2) still holds.

In all that follows, the real numbers s > 3/2 and p > 2 are such that the trace operator from W 1,s(Ω) into Lp(Γ0) is
well defined. Since in this case the space W 2,s(Ω) is also an algebra, the following implication holds:

Φ ∈ W 3,s(Ω) and det ∇Φ > 0 in Ω ⇒ C := ∇ΦT ∇Φ ∈ W 2,s(Ω,S3
>

)
and ϕ := Φ|Γ0 ∈ W 2,p(Γ0).

The definition of the tensor fields a(ϕ) and b(ϕ) can then be extended to fields ϕ ∈ W 2,p(Γ0), in which case:

a(ϕ) ∈W
1,p(Γ0) and b(ϕ) ∈ L

p(Γ0).

To see this, note that W 2,p(Γ0) ⊂ C 1(Γ 0) by the Sobolev embedding theorem; hence the vector field a3(ϕ) appearing in
the definition of b(ϕ) (see Section 2) is well defined and belongs to the space W 1,p(Γ0).

The definitions of the tensor fields a�(C) and b�(C) can also be extended to matrix fields C ∈ W 2,s(Ω,S3
>), in which

case:

a�(C) ∈W
1,p(Γ0) and b�(C) ∈ L

p(Γ0).

To see this, note that W 2,s(Ω,S3
>) ⊂ C0(Ω;S3

>) by the Sobolev embedding theorem; hence the vector field N� = N�(C)

appearing in the definition of b�(C) (see Section 2) is well defined and belongs to the space W 2,s(Ω).
The above observations allow us to generalize Theorems 1 and 2 as follows.

Theorem 3. Given any orientation-preserving immersion Φ ∈ W 3,s(Ω), let C := ∇ΦT ∇Φ ∈ W 2,s(Ω;S3
>) and ϕ := Φ|Γ0 ∈

W 2,p(Γ0). Then:

a�(C) = a(ϕ) in W
1,p(Γ0) and b�(C) = b(ϕ) in L

p(Γ0).

Proof. The proof follows from Theorem 1 combined with the density of the space C 3(Ω) in W 3,s(Ω). �
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Theorem 4. Let there be given an orientation-preserving immersion Φ0 ∈ W 3,s(Ω) and let ϕ0 := Φ0|Γ0 ∈ W 2,p(Γ0). If an
orientation-preserving immersion Φ ∈ W 3,s(Ω) satisfies the boundary condition:

Φ|Γ0 = Φ0|Γ0 in W 2,p(Γ0),

then the associated Cauchy–Green tensor field C = ∇ΦT ∇Φ ∈ W 2,s(Ω;S3
>) satisfies the boundary conditions:

a�(C) = a(ϕ0) in W
1,p(Γ0) and b�(C) = b(ϕ0) in L

p(Γ0).

Assume in addition that Γ0 is connected. If the Cauchy–Green tensor field C = ∇ΦT ∇Φ ∈ W 2,s(Ω;S3
>) associated with an

orientation-preserving immersion Φ ∈ W 3,s(Ω) satisfies the boundary conditions:

a�(C) = a(ϕ0) in W
1,p(Γ0) and b�(C) = b(ϕ0) in L

p(Γ0),

then there exists a unique proper isometry χ ∈ Rig+(R3) such that the immersion (χ ◦ Φ) ∈ W 3,s(Ω) satisfies the boundary condi-
tion:

(χ ◦ Φ)|Γ0 = Φ0|Γ0 in W 2,p(Γ0).

Sketch of proof. Let C = ∇ΦT ∇Φ ∈ W 2,s(Ω;S3
>) and ϕ := Φ|Γ0 ∈ W 2,p(Γ0) be defined by a same orientation-preserving

immersion Φ ∈ W 3,s(Ω). Then Theorem 3 shows that:

a�(C) = a(ϕ) in W
1,p(Γ0) and b�(C) = b(ϕ) in L

p(Γ0).

The conclusion follows by combining these relations with the following version of the rigidity lemma on a surface, due
to [7]: If two immersions ϕ ∈ W 2,p(Γ0) and ϕ0 ∈ W 2,p(Γ0) satisfy a(ϕ) = a(ϕ0) in W

1,p(Ω) and b(ϕ) = b(ϕ0) in L
p(Γ0), and if

Γ0 is connected, then there exists a proper isometry χ ∈ Rig+(R3) such that ϕ = χ ◦ ϕ0 in W 2,p(Γ0). �
Remark. In the above, we have only considered Sobolev spaces W k,s(Ω) for some integer k. However, all results of this

section hold as well for orientation-preserving immersions Φ ∈ W 2+ 1
p ,p

(Ω) for any p > 2, since then:

C := ∇ΦT ∇Φ ∈ W 1+ 1
p ,p(

Ω,S3
>

)
and ϕ := Φ|Γ0 ∈ W 2,p(Γ0),

which in turn implies that:

a(ϕ),a�(C) ∈W
1,p(Γ0) and b(ϕ),b�(C) ∈ L

p(Γ0). �
We refer to the extended article [6] for applications to nonlinear elasticity of the results presented in this Note. There,

it will be shown in particular how the Dirichlet–Neumann boundary value problem of three-dimensional nonlinear elasticity can
be completely recast as a boundary value problem with the tensor field C = ∇ΦT ∇Φ as the sole unknown. Such a result thus
complements the approach of [5], which was restricted to the homogeneous pure Dirichlet problem of three-dimensional
nonlinear elasticity.
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