Mathematical Problems in Mechanics

Expression of Dirichlet boundary conditions in terms of the Cauchy-Green tensor field

Expression de conditions aux limites de Dirichlet en fonction du champ de tenseurs de Cauchy-Green

Philippe G. Ciarlet ${ }^{\mathrm{a}}$, Cristinel Mardare ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
${ }^{\text {b }}$ Université Pierre-et-Marie-Curie, laboratoire Jacques-Louis-Lions, 4, place Jussieu, 75005 Paris, France

A R T I CLE IN F O

Article history:

Received and accepted 3 May 2013
Available online 28 May 2013
Presented by Philippe G. Ciarlet

Abstract

In a previous work, it was shown how the Cauchy-Green tensor field $\boldsymbol{C}:=\boldsymbol{\nabla} \boldsymbol{\Phi}^{T} \boldsymbol{\nabla} \boldsymbol{\Phi} \in$ $W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right), s>3 / 2$, can be considered as the sole unknown in the homogeneous Dirichlet problem of nonlinear elasticity posed over a domain $\Omega \subset \mathbb{R}^{3}$, instead of the deformation $\boldsymbol{\Phi} \in W^{3, s}\left(\Omega ; \mathbb{R}^{3}\right)$ in the usual approach. The purpose of this Note is to show that the same approach applies as well to the Dirichlet-Neumann problem. To this end, we show how the boundary condition $\boldsymbol{\Phi}=\boldsymbol{\Phi}_{0}$ on a portion Γ_{0} of the boundary of Ω can be recast, again as boundary conditions on Γ_{0}, but this time expressed only in terms of the new unknown $\boldsymbol{C} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

\section*{R É S U M É}

Dans un travail antérieur, on a montré comment le champ $\boldsymbol{C}:=\boldsymbol{\nabla} \boldsymbol{\Phi}^{T} \boldsymbol{\nabla} \boldsymbol{\Phi} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$, $s>3 / 2$, des tenseurs de Cauchy-Green peut être considéré comme la seule inconnue dans le problème de Dirichlet homogène pour l'élasticité non linéaire posé sur un domaine $\Omega \subset \mathbb{R}^{3}$, au lieu de la déformation $\boldsymbol{\Phi} \in W^{3, s}\left(\Omega ; \mathbb{R}^{3}\right)$ dans l'approche habituelle. L'objet de cette Note est de montrer que la même approche s'applique aussi bien au problème de Dirichlet-Neumann. À cette fin, nous montrons comment la condition aux limites $\boldsymbol{\Phi}=\boldsymbol{\Phi}_{0}$ sur une portion Γ_{0} de la frontière de Ω peut être ré-écrite, à nouveau sous forme de conditions aux limites sur Γ_{0}, mais exprimées cette fois uniquement en fonction de la nouvelle inconnue $\boldsymbol{C} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Preliminaries

Greek indices, resp. Latin indices, range over the set $\{1,2\}$, resp. $\{1,2,3\}$. The summation convention with respect to repeated indices is used in conjunction with these rules.

The notations $\mathbb{S}^{3}, \mathbb{S}_{>}^{3}$, and \mathbb{O}_{+}^{3}, respectively designate the space of all symmetric matrices, the set of all positive-definite symmetric matrices, and the set of all proper orthogonal matrices, of order 3 . The notation $\left.f\right|_{A}$ designates the restriction

[^0]to the set A of a function f defined over a set that contains A. Given a normed vector space X, the notation $\mathcal{L}_{\text {sym }}^{2}(X \times X)$ designates the space of all continuous symmetric bilinear forms defined on the product $X \times X$.

The Euclidean norm, the exterior product, the dyadic product, and the inner product of vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{3}$ are respectively denoted $|\mathbf{u}|, \mathbf{u} \wedge \mathbf{v}, \mathbf{u} \otimes \mathbf{v}$, and $\mathbf{u} \cdot \mathbf{v}$. The inner product of two $m \times m$ tensors \boldsymbol{e} and $\boldsymbol{\tau}$ is denoted and defined by $\boldsymbol{e}: \boldsymbol{\tau}=\operatorname{tr}\left(\boldsymbol{e}^{T} \boldsymbol{\tau}\right)$.

The set of k-times continuously differentiable functions from an open subset $U \subset X$ of a normed vector space X into a subset $V \subset Y$ of a normed vector space Y is denoted $\mathcal{C}^{k}(U ; V)$. The set $\mathcal{C}^{k}(\bar{U} ; V)$ is defined as the subset of the space $\mathcal{C}^{k}(U ; V)$ that consists of all functions $f \in \mathcal{C}^{k}(U ; V)$ that, together with all their partial derivatives of order $\leqslant k$, possess continuous extensions to the closure \bar{U} of U, the extension of f being in addition with values in V.

Throughout this Note, the notation Ω designates a bounded and connected open subset of \mathbb{R}^{3}, whose boundary $\Gamma:=$ $\partial \Omega$ is of class \mathcal{C}^{4}. This means that there exists a finite number N of open sets $\omega^{k} \subset \mathbb{R}^{2}$ and of injective immersions $\boldsymbol{\theta}^{k} \in \mathcal{C}^{4}\left(\omega^{k} ; \mathbb{R}^{3}\right), k=1,2, \ldots, N$, such that $\Gamma=\bigcup_{k=1}^{N} \boldsymbol{\theta}^{k}\left(\omega^{k}\right)$. It also implies that there exists $\varepsilon>0$ such that the mappings $\boldsymbol{\Theta}^{k} \in \mathcal{C}^{3}\left(U^{k} ; \mathbb{R}^{3}\right)$ defined by:

$$
\boldsymbol{\Theta}^{k}\left(y, y_{3}\right):=\boldsymbol{\theta}^{k}(y)+y_{3} \boldsymbol{a}_{3}^{k}(y) \quad \text { for all }\left(y, y_{3}\right) \in U^{k}:=\omega^{k} \times(-\varepsilon, \varepsilon)
$$

where \boldsymbol{a}_{3}^{k} denotes the unit inner normal vector field along the portion $\boldsymbol{\theta}^{k}\left(\omega^{k}\right)$ of the boundary of Ω, are \mathcal{C}^{3}-diffeomorphisms onto their image (cf. [3, Theorem 4.1-1]). Thus the mappings $\left\{\boldsymbol{\Theta}^{k} ; 1 \leqslant k \leqslant N\right\}$ form an atlas of local charts for the set $\Omega_{\varepsilon}:=\{x \in \bar{\Omega} ; \operatorname{dist}(x, \Gamma)<\varepsilon\} \subset \bar{\Omega}$, while the mappings $\left\{\boldsymbol{\theta}^{k} ; \quad 1 \leqslant k \leqslant N\right\}$ form an atlas of local charts for the surface $\Gamma=\partial \Omega \subset \mathbb{R}^{3}$. When no confusion should arise, we will drop the explicit dependence on k for notational brevity.

Generic points in ω, in $U=\omega \times(-\varepsilon, \varepsilon)$, and in $\bar{\Omega}$, are respectively denoted $y=\left(y_{\alpha}\right),\left(y, y_{3}\right)$, and $x=\left(x_{i}\right)$. Partial derivatives with respect to y_{i} are denoted $\partial_{i}:=\partial / \partial y_{i}$, while partial derivatives with respect to x_{i} are denoted $\partial / \partial x_{i}$. The gradient of a vector field $\boldsymbol{\Phi}=\left(\Phi_{i}\right): \bar{\Omega} \rightarrow \mathbb{R}^{3}$ is the 3×3 matrix field denoted and defined by $\nabla \boldsymbol{\Phi}:=\left(\partial \Phi_{i} / \partial x_{j}\right)$, with i as its row index.

The tangent plane $T_{x} \Gamma$ of the surface $\Gamma \subset \mathbb{R}^{3}$ at the point $x \in \Gamma$ will be identified with the subspace of \mathbb{R}^{3} spanned by the vectors $\boldsymbol{a}_{\alpha}(y):=\partial_{\alpha} \boldsymbol{\theta}(y)$, where $y=\boldsymbol{\theta}^{-1}(y)$. The vectors $\boldsymbol{a}^{\beta}(y)$ of the dual basis of the tangent plane are those defined by the relations $\boldsymbol{a}^{\beta}(y) \cdot \boldsymbol{a}_{\alpha}(y)=\delta_{\alpha}^{\beta}$. The unit inner normal vector to $T_{x} \Gamma$ is defined by $\boldsymbol{a}_{3}(y)=\boldsymbol{a}^{3}(y):=\left(\boldsymbol{a}_{1}(y) \wedge\right.$ $\left.\boldsymbol{a}_{2}(y)\right) /\left|\boldsymbol{a}_{1}(y) \wedge \boldsymbol{a}_{2}(y)\right|$ (to ensure that the vector $\boldsymbol{a}_{3}(y)$ points toward the interior of Ω, it suffices to exchange if necessary the coordinates y_{1} and y_{2}).

The unit outer normal vector field along the boundary Γ of Ω is denoted \boldsymbol{n}; thus $\boldsymbol{n}(x)=-\boldsymbol{a}_{3}(y), y=\boldsymbol{\theta}^{-1}(x)$, in a local chart.

The tangent space $T_{x} \mathbb{R}^{3}$ of the Euclidean space \mathbb{R}^{3} at the point $x \in \mathbb{R}^{3}$ will be identified with \mathbb{R}^{3} by means of the basis formed by the vectors $\boldsymbol{g}_{i}\left(y, y_{3}\right):=\partial_{i} \boldsymbol{\Theta}\left(y, y_{3}\right)$, where $\left(y, y_{3}\right)=\boldsymbol{\Theta}^{-1}(x)$. The vectors of the dual basis are those defined by the relations $\mathbf{g}^{j}\left(y, y_{3}\right) \cdot \boldsymbol{g}_{i}\left(y, y_{3}\right)=\delta_{i}^{j}$. Note that:

$$
\boldsymbol{g}_{\alpha}\left(y, y_{3}\right)=\boldsymbol{a}_{\alpha}(y)+y_{3} \partial_{\alpha} \boldsymbol{a}_{3}(y) \quad \text { and } \quad \boldsymbol{g}_{3}\left(y, y_{3}\right)=\boldsymbol{a}_{3}(y)
$$

Let $\Gamma_{0} \subset \Gamma$ denote a relatively open subset of Γ. Since Γ is a manifold of class \mathcal{C}^{4}, so is Γ_{0}. It follows that functions, vector fields, and tensor fields, of class $\mathcal{C}^{k}, 0 \leqslant k \leqslant 4$, can be defined on Γ_{0}. The Lebesgue and Sobolev spaces on Γ_{0} used in this paper are defined as in, e.g., Aubin [1].

Spaces of vector fields, resp. symmetric tensor fields, with values in \mathbb{R}^{3}, resp. in \mathbb{S}^{3}, are defined by using a given Cartesian basis $\left\{\hat{\boldsymbol{e}}^{i}, 1 \leqslant i \leqslant 3\right\}$ in \mathbb{R}^{3}, resp. the basis $\left\{\frac{1}{2}\left(\hat{\boldsymbol{e}}^{i} \otimes \hat{\boldsymbol{e}}^{j}+\hat{\boldsymbol{e}}^{j} \otimes \hat{\boldsymbol{e}}^{i}\right), 1 \leqslant i, j \leqslant 3\right\}$ in \mathbb{S}^{3}. They will be denoted by bold letters and by capital Roman letters, respectively.

Given an orientation-preserving immersion $\boldsymbol{\Phi}: \bar{\Omega} \rightarrow \mathbb{R}^{3}$ of class \mathcal{C}^{1}, that is, a mapping $\boldsymbol{\Phi} \in \boldsymbol{C}^{1}(\bar{\Omega}):=\mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{R}^{3}\right)$ such that $\operatorname{det}(\nabla \boldsymbol{\Phi}(x))>0$ for all $x \in \bar{\Omega}$, the Cauchy-Green, or metric, tensor field induced by $\boldsymbol{\Phi}$ is the field $\boldsymbol{C}:=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in \mathcal{C}^{0}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$. Each Cauchy-Green tensor field $\mathbf{C} \in \mathcal{C}^{0}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$ defines a Riemannian metric on $\bar{\Omega}$ by means of the bilinear forms:

$$
(\boldsymbol{C}(x))(\boldsymbol{u}, \boldsymbol{v}):=\boldsymbol{u}^{T} \boldsymbol{C}(x) \boldsymbol{v} \quad \text { for all }(\boldsymbol{u}, \boldsymbol{v}) \in \mathbb{R}^{3} \times \mathbb{R}^{3}, x \in \bar{\Omega}
$$

Complete proofs and complements will be found in [6].

2. Fundamental forms of the surface Γ_{0}

Given an orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{C}^{2}(\bar{\Omega})$, the restriction $\boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in \boldsymbol{C}^{2}\left(\bar{\Gamma}_{0}\right)$ is an immersion of $\bar{\Gamma}_{0}$ into \mathbb{R}^{3}. The first and second fundamental forms induced by φ are then respectively defined in each local chart by:

$$
\begin{array}{ll}
\mathbf{a}(\boldsymbol{\varphi}) \circ \boldsymbol{\theta}=a_{\alpha \beta}(\boldsymbol{\varphi}) \boldsymbol{a}^{\alpha} \otimes \boldsymbol{a}^{\beta}, & \text { where } a_{\alpha \beta}(\boldsymbol{\varphi}):=\boldsymbol{a}_{\alpha}(\boldsymbol{\varphi}) \cdot \boldsymbol{a}_{\beta}(\boldsymbol{\varphi}) \\
\mathbf{b}(\boldsymbol{\varphi}) \circ \boldsymbol{\theta}=b_{\alpha \beta}(\boldsymbol{\varphi}) \boldsymbol{a}^{\alpha} \otimes \boldsymbol{a}^{\beta}, & \text { where } b_{\alpha \beta}(\boldsymbol{\varphi}):=\partial_{\alpha} \boldsymbol{a}_{\beta}(\boldsymbol{\varphi}) \cdot \boldsymbol{a}_{3}(\boldsymbol{\varphi})=-\boldsymbol{a}_{\alpha}(\boldsymbol{\varphi}) \cdot \partial_{\beta} \boldsymbol{a}_{3}(\boldsymbol{\varphi}) \tag{1}
\end{array}
$$

the vector fields $\boldsymbol{a}_{i}(\boldsymbol{\varphi})$ and $\boldsymbol{a}^{j}(\boldsymbol{\varphi})$ being defined by:

$$
\boldsymbol{a}_{\alpha}(\boldsymbol{\varphi}):=\partial_{\alpha}(\boldsymbol{\varphi} \circ \boldsymbol{\theta}), \quad \boldsymbol{a}_{3}(\boldsymbol{\varphi}):=\frac{\boldsymbol{a}_{1}(\boldsymbol{\varphi}) \wedge \boldsymbol{a}_{2}(\boldsymbol{\varphi})}{\left|\boldsymbol{a}_{1}(\boldsymbol{\varphi}) \wedge \boldsymbol{a}_{2}(\boldsymbol{\varphi})\right|}, \quad \text { and } \quad \boldsymbol{a}_{i}(\boldsymbol{\varphi}) \cdot \boldsymbol{a}^{j}(\boldsymbol{\varphi})=\delta_{i}^{j}
$$

Given any metric tensor field $\mathbf{C} \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$, let:

$$
\boldsymbol{N}_{\sharp}(\boldsymbol{C}):=\frac{\boldsymbol{C}^{-1} \boldsymbol{N}}{\left[\boldsymbol{N}^{T} \boldsymbol{C}^{-1} \boldsymbol{N}\right]^{1 / 2}} \in \boldsymbol{C}^{1}(\bar{\Omega}) \quad \text { and } \quad \boldsymbol{n}_{\sharp}(\boldsymbol{C}):=\left.\boldsymbol{N}_{\sharp}\right|_{\Gamma_{0}} \in \boldsymbol{C}^{1}\left(\bar{\Gamma}_{0}\right),
$$

where $\boldsymbol{N} \in \boldsymbol{C}^{3}(\bar{\Omega})$ denotes any \mathcal{C}^{3}-extension to $\bar{\Omega}$ of the unit outer normal vector field $\boldsymbol{n} \in \boldsymbol{C}^{3}(\Gamma)$ to the boundary of Ω defined in Section 1. Then $\boldsymbol{n}_{\sharp}:=\boldsymbol{n}_{\sharp}(\mathbf{C})$ is a unit outer normal vector field to Γ_{0} with respect to the metric \mathbf{C}, that is:

$$
\boldsymbol{n}_{\sharp}(x)^{T} \boldsymbol{C}(x) \mathbf{t}=0 \quad \text { for all } \mathbf{t} \in T_{x} \Gamma_{0}, \quad \boldsymbol{n}_{\sharp}(x)^{T} \boldsymbol{C}(x) \boldsymbol{n}_{\sharp}(x)=1, \quad \text { and } \quad \boldsymbol{n}_{\sharp}(x)^{T} \boldsymbol{C}(x) \boldsymbol{n}(x)>0 .
$$

Note that the fields $\boldsymbol{N}_{\sharp}(\boldsymbol{C})$ and $\boldsymbol{n}_{\sharp}(\boldsymbol{C})$ will be simply abbreviated to \boldsymbol{N}_{\sharp} and \boldsymbol{n}_{\sharp}, respectively, when no confusion should arise The first and second fundamental forms of the surface Γ_{0} induced by \boldsymbol{C} are then the tensor fields:

$$
\begin{aligned}
& \mathbf{a}^{\sharp}(\boldsymbol{C}): x \in \Gamma_{0} \rightarrow\left(\mathbf{a}^{\sharp}(\boldsymbol{C})\right)(x) \in \mathcal{L}_{\text {sym }}^{2}\left(T_{x} \Gamma_{0} \times T_{x} \Gamma_{0}\right), \\
& \mathbf{b}^{\sharp}(\boldsymbol{C}): x \in \Gamma_{0} \rightarrow\left(\mathbf{b}^{\sharp}(\boldsymbol{C})\right)(x) \in \mathcal{L}_{\text {sym }}^{2}\left(T_{x} \Gamma_{0} \times T_{x} \Gamma_{0}\right),
\end{aligned}
$$

defined in a local chart by:

$$
\begin{array}{ll}
\mathbf{a}^{\sharp}(\boldsymbol{C}) \circ \boldsymbol{\theta}=a_{\alpha \beta}^{\sharp}(\boldsymbol{C}) \boldsymbol{a}^{\alpha} \otimes \boldsymbol{a}^{\beta}, & \text { where } a_{\alpha \beta}^{\sharp}(\boldsymbol{C}):=\left.C_{\alpha \beta}\right|_{\omega \times\{0\}}, \\
\mathbf{b}^{\sharp}(\boldsymbol{C}) \circ \boldsymbol{\theta}=b_{\alpha \beta}^{\sharp}(\boldsymbol{C}) \boldsymbol{a}^{\alpha} \otimes \boldsymbol{a}^{\beta}, & \text { where } b_{\alpha \beta}^{\sharp}(\boldsymbol{C}):=\left.\frac{1}{2}\left(C_{\alpha i} \partial_{\beta} N_{\sharp}^{i}+C_{\beta i} \partial_{\alpha} N_{\sharp}^{i}+N_{\sharp}^{i} \partial_{i} C_{\alpha \beta}\right)\right|_{\omega \times\{0\}}, \tag{2}
\end{array}
$$

where the functions $C_{i j}$ and N_{\sharp}^{i} are defined by the relations:

$$
\boldsymbol{C} \circ \boldsymbol{\Theta}=C_{i j} \boldsymbol{g}^{i} \otimes \mathbf{g}^{j} \quad \text { and } \quad \boldsymbol{N}_{\sharp} \circ \boldsymbol{\Theta}=N_{\sharp}^{i} \boldsymbol{g}_{i} \quad \text { in } \omega \times[0, \varepsilon)
$$

Note that the definition of the second fundamental form $\mathbf{b}^{\sharp}(\mathbf{C})$ is independent of the choice (induced by the choice of an extension to $\bar{\Omega}$ of the unit outer normal vector field along the boundary of Ω) of the extension \boldsymbol{N}_{\sharp} of \boldsymbol{n}_{\sharp} to $\bar{\Omega}$.

Remark. In other words, the fundamental forms $\mathbf{a}^{\sharp}(\mathbf{C})$ and $\mathbf{b}^{\sharp}(\mathbf{C})$ are the restrictions of the metric tensor \boldsymbol{C} and of its Lie derivative (cf., e.g., [2]) along the vector field \boldsymbol{N}_{\sharp} to the subset $T_{\chi} \Gamma_{0} \times T_{\chi} \Gamma_{0}$ of $T_{x} \mathbb{R}^{3} \times T_{\chi} \mathbb{R}^{3}$, that is,

$$
\left(\mathbf{a}^{\sharp}(\boldsymbol{C})\right)(x)=\left.\boldsymbol{C}(x)\right|_{x_{x} \Gamma_{0} \times T_{x} \Gamma_{0}} \quad \text { and } \quad\left(\mathbf{b}^{\sharp}(\boldsymbol{C})\right)(x)=\left.\frac{1}{2}\left(\mathcal{L}_{\boldsymbol{N}_{\sharp}} \boldsymbol{C}\right)(x)\right|_{T_{x} \Gamma_{0} \times T_{x} \Gamma_{0}}, \quad x \in \Gamma_{0} .
$$

The following theorem establishes the relation between the tensors fields defined by (1) and (2) when the vector field φ and the tensor field \mathbf{C} are induced by the same orientation-preserving immersion $\boldsymbol{\Phi}: \bar{\Omega} \rightarrow \mathbb{R}^{3}$.

Theorem 1. Given any orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{C}^{2}(\bar{\Omega})$, let $\mathbf{C}:=\boldsymbol{\nabla} \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$ and $\boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in \boldsymbol{C}^{2}\left(\Gamma_{0}\right)$. Then

$$
\mathbf{a}^{\sharp}(\boldsymbol{C})=\mathbf{a}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{C}^{1}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\boldsymbol{C})=\mathbf{b}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{C}^{0}\left(\Gamma_{0}\right) .
$$

Sketch of proof. Proving the theorem amounts to proving the equalities:

$$
a_{\alpha \beta}^{\sharp}(\boldsymbol{C})=a_{\alpha \beta}(\boldsymbol{\varphi}) \quad \text { and } \quad b_{\alpha \beta}^{\sharp}(\boldsymbol{C})=b_{\alpha \beta}(\boldsymbol{\varphi}) \quad \text { in } \omega,
$$

in any local chart. The first equality follows from direct computations. The second equality follows from the observation that the relation $\boldsymbol{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi}$ implies that the vector field $\boldsymbol{g}^{3} \in \boldsymbol{C}^{1}(\bar{\Omega})$ defined by the relations $\mathbf{g}^{3}(x) \cdot \partial_{i}(\boldsymbol{\Phi} \circ \boldsymbol{\Theta})(x)$ at each $x \in \bar{\Omega}$ satisfies $\left.\boldsymbol{g}^{3}\right|_{\Gamma}=\left.\boldsymbol{N}_{\sharp}\right|_{\Gamma}$.

3. An intrinsic formulation of the boundary conditions

As a consequence of Theorem 1, we now show how a Dirichlet boundary condition imposed on the orientation-preserving immersion $\boldsymbol{\Phi}$ in the displacement-traction problem of nonlinear elasticity can be replaced by a boundary condition imposed on the Cauchy-Green tensor field \mathbf{C}. The set of proper isometries of \mathbb{R}^{3} appearing in the next theorem is defined by:

$$
\mathbf{R i g}_{+}\left(\mathbb{R}^{3}\right):=\left\{\chi: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3} ; \text { there exist } \boldsymbol{c} \in \mathbb{R}^{3} \text { and } \boldsymbol{Q} \in \mathbb{O}_{+}^{3} \text { such that } \chi(x)=\boldsymbol{c}+\boldsymbol{Q} x, x \in \mathbb{R}^{3}\right\}
$$

Theorem 2. Let there be given an orientation-preserving immersion $\boldsymbol{\Phi}_{0} \in \boldsymbol{C}^{2}(\bar{\Omega})$ and let $\boldsymbol{\varphi}_{0}:=\left.\boldsymbol{\Phi}_{0}\right|_{\Gamma_{0}} \in \boldsymbol{C}^{2}\left(\Gamma_{0}\right)$. If an orientationpreserving immersion $\boldsymbol{\Phi} \in \mathbf{C}^{2}(\bar{\Omega})$ satisfies the boundary condition:

$$
\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}}=\left.\boldsymbol{\Phi}_{0}\right|_{\Gamma_{0}} \quad \text { in } \boldsymbol{C}^{2}\left(\Gamma_{0}\right)
$$

then the associated Cauchy-Green tensor field $\mathbf{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$ satisfies the boundary conditions:

$$
\mathbf{a}^{\sharp}(\mathbf{C})=\mathbf{a}\left(\varphi_{0}\right) \quad \text { in } \mathbb{C}^{1}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\mathbf{C})=\mathbf{b}\left(\varphi_{0}\right) \quad \text { in } \mathbb{C}^{0}\left(\Gamma_{0}\right)
$$

Assume in addition that Γ_{0} is connected. If the Cauchy-Green tensor field $\boldsymbol{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$ associated with an orientation-preserving immersion $\boldsymbol{\Phi} \in \mathbf{C}^{2}(\bar{\Omega})$ satisfies the boundary conditions:

$$
\begin{equation*}
\mathbf{a}^{\sharp}(\mathbf{C})=\mathbf{a}\left(\boldsymbol{\varphi}_{0}\right) \quad \text { in } \mathbb{C}^{1}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\boldsymbol{C})=\mathbf{b}\left(\boldsymbol{\varphi}_{0}\right) \quad \text { in } \mathbb{C}^{0}\left(\Gamma_{0}\right) \tag{3}
\end{equation*}
$$

then there exists a unique proper isometry $\chi \in \mathbf{R i g}_{+}\left(\mathbb{R}^{3}\right)$ such that the immersion $(\boldsymbol{\chi} \circ \boldsymbol{\Phi}) \in \mathbf{C}^{2}(\bar{\Omega})$ satisfies the boundary condition:

$$
\begin{equation*}
\left.(\boldsymbol{\chi} \circ \boldsymbol{\Phi})\right|_{\Gamma_{0}}=\left.\boldsymbol{\Phi}_{0}\right|_{\Gamma_{0}} \quad \text { in } \boldsymbol{C}^{2}\left(\Gamma_{0}\right) \tag{4}
\end{equation*}
$$

Sketch of proof. Let $\boldsymbol{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$ and $\boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in \boldsymbol{C}^{2}\left(\Gamma_{0}\right)$ be defined by a same orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{C}^{2}(\bar{\Omega})$. Then Theorem 1 shows that:

$$
\mathbf{a}^{\sharp}(\boldsymbol{C})=\mathbf{a}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{C}^{1}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\mathbf{C})=\mathbf{b}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{C}^{0}\left(\Gamma_{0}\right)
$$

The conclusion follows by combining these relations with the classical rigidity lemma on a surface (see, e.g., [3] or [4]), which reads as follows: If two immersions $\boldsymbol{\varphi} \in \mathbf{C}^{2}\left(\Gamma_{0}\right)$ and $\boldsymbol{\varphi}_{0} \in \boldsymbol{C}^{2}\left(\Gamma_{0}\right)$ satisfy $\mathbf{a}(\boldsymbol{\varphi})=\mathbf{a}\left(\boldsymbol{\varphi}_{0}\right)$ and $\mathbf{b}(\boldsymbol{\varphi})=\mathbf{b}\left(\boldsymbol{\varphi}_{0}\right)$ on Γ_{0}, and if Γ_{0} is connected, then there exists a proper isometry $\chi \in \mathbf{R i g}_{+}\left(\mathbb{R}^{3}\right)$ such that $\boldsymbol{\varphi}=\chi \circ \varphi_{0}$.

Remark. The assumption that Γ_{0} is connected is essential, as illustrated by the following counterexample: assume that $\Gamma_{0}=$ $\Gamma_{0,1} \cup \Gamma_{0,2}$ with $\bar{\Gamma}_{0,1} \cap \bar{\Gamma}_{0,2}=\emptyset$. Let $\boldsymbol{\Phi}_{0}=\boldsymbol{i d}$ and $\boldsymbol{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in \mathcal{C}^{1}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$, where $\boldsymbol{\Phi} \in \boldsymbol{C}^{2}(\bar{\Omega})$ is an orientation-preserving immersion such that $\Phi=\chi_{1}$ in a neighborhood of $\Gamma_{0,1}$, and $\Phi=\chi_{2}$ in a neighborhood of $\Gamma_{0,2}$, where $\chi_{1} \neq \chi_{2}$ are two proper isometries of \mathbb{R}^{3}. Then the boundary condition (3) is clearly satisfied, while (4) is not.

4. Extension to Sobolev spaces

The results of Sections 2 and 3 can be extended to orientation-preserving immersions and Cauchy-Green tensor fields with components in Sobolev spaces with sufficient regularity, so as to ensure that the fundamental forms induced by the immersion $\boldsymbol{\varphi}$ and by the metric tensor field \boldsymbol{C} are well defined and that the rigidity theorem on a surface (see the proof of Theorem 2) still holds.

In all that follows, the real numbers $s>3 / 2$ and $p>2$ are such that the trace operator from $W^{1, s}(\Omega)$ into $L^{p}\left(\Gamma_{0}\right)$ is well defined. Since in this case the space $W^{2, s}(\Omega)$ is also an algebra, the following implication holds:

$$
\boldsymbol{\Phi} \in \boldsymbol{W}^{3, s}(\Omega) \quad \text { and } \quad \operatorname{det} \nabla \boldsymbol{\Phi}>0 \quad \text { in } \bar{\Omega} \Rightarrow \boldsymbol{C}:=\boldsymbol{\nabla} \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in W^{2, s}\left(\Omega, \mathbb{S}_{>}^{3}\right) \quad \text { and } \boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)
$$

The definition of the tensor fields $\mathbf{a}(\boldsymbol{\varphi})$ and $\mathbf{b}(\boldsymbol{\varphi})$ can then be extended to fields $\boldsymbol{\varphi} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$, in which case:

$$
\mathbf{a}(\varphi) \in \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}(\varphi) \in \mathbb{L}^{p}\left(\Gamma_{0}\right)
$$

To see this, note that $\boldsymbol{W}^{2, p}\left(\Gamma_{0}\right) \subset \boldsymbol{C}^{1}\left(\bar{\Gamma}_{0}\right)$ by the Sobolev embedding theorem; hence the vector field $\boldsymbol{a}_{3}(\boldsymbol{\varphi})$ appearing in the definition of $\mathbf{b}(\boldsymbol{\varphi})$ (see Section 2) is well defined and belongs to the space $\boldsymbol{W}^{1, p}\left(\Gamma_{0}\right)$.

The definitions of the tensor fields $\mathbf{a}^{\sharp}(\mathbf{C})$ and $\mathbf{b}^{\sharp}(\boldsymbol{C})$ can also be extended to matrix fields $\boldsymbol{C} \in W^{2, s}\left(\Omega, \mathbb{S}_{>}^{3}\right)$, in which case:

$$
\mathbf{a}^{\sharp}(\boldsymbol{C}) \in \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\boldsymbol{C}) \in \mathbb{L}^{p}\left(\Gamma_{0}\right) .
$$

To see this, note that $W^{2, s}\left(\Omega, \mathbb{S}_{>}^{3}\right) \subset \mathcal{C}^{0}\left(\bar{\Omega} ; \mathbb{S}_{>}^{3}\right)$ by the Sobolev embedding theorem; hence the vector field $\boldsymbol{N}_{\sharp}=\boldsymbol{N}_{\sharp}(\mathbf{C})$ appearing in the definition of $\mathbf{b}^{\sharp}(\mathbf{C})$ (see Section 2) is well defined and belongs to the space $\boldsymbol{W}^{2, s}(\Omega)$.

The above observations allow us to generalize Theorems 1 and 2 as follows.
Theorem 3. Given any orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{W}^{3, s}(\Omega)$, let $\boldsymbol{C}:=\boldsymbol{\nabla} \boldsymbol{\Phi}^{T} \boldsymbol{\nabla} \boldsymbol{\Phi} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$ and $\boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in$ $\boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$. Then:

$$
\mathbf{a}^{\sharp}(\boldsymbol{C})=\mathbf{a}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\boldsymbol{C})=\mathbf{b}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{L}^{p}\left(\Gamma_{0}\right) .
$$

Proof. The proof follows from Theorem 1 combined with the density of the space $\boldsymbol{C}^{3}(\bar{\Omega})$ in $\boldsymbol{W}^{3, s}(\Omega)$.

Theorem 4. Let there be given an orientation-preserving immersion $\boldsymbol{\Phi}_{0} \in \boldsymbol{W}^{3, s}(\Omega)$ and let $\boldsymbol{\varphi}_{0}:=\left.\boldsymbol{\Phi}_{0}\right|_{\Gamma_{0}} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$. If an orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{W}^{3, s}(\Omega)$ satisfies the boundary condition:

$$
\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}}=\left.\boldsymbol{\Phi}_{0}\right|_{\Gamma_{0}} \quad \text { in } \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)
$$

then the associated Cauchy-Green tensor field $\mathbf{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$ satisfies the boundary conditions:

$$
\mathbf{a}^{\sharp}(\mathbf{C})=\mathbf{a}\left(\varphi_{0}\right) \quad \text { in } \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\mathbf{C})=\mathbf{b}\left(\varphi_{0}\right) \quad \text { in } \mathbb{L}^{p}\left(\Gamma_{0}\right) .
$$

Assume in addition that Γ_{0} is connected. If the Cauchy-Green tensor field $\boldsymbol{C}=\nabla \boldsymbol{\Phi}^{T} \boldsymbol{\nabla} \boldsymbol{\Phi} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$ associated with an orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{W}^{3, s}(\Omega)$ satisfies the boundary conditions:

$$
\mathbf{a}^{\sharp}(\mathbf{C})=\mathbf{a}\left(\boldsymbol{\varphi}_{0}\right) \quad \text { in } \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\mathbf{C})=\mathbf{b}\left(\varphi_{0}\right) \quad \text { in } \mathbb{L}^{p}\left(\Gamma_{0}\right),
$$

then there exists a unique proper isometry $\boldsymbol{\chi} \in \mathbf{R i g}_{+}\left(\mathbb{R}^{3}\right)$ such that the immersion $(\boldsymbol{\chi} \circ \boldsymbol{\Phi}) \in \boldsymbol{W}^{3, s}(\Omega)$ satisfies the boundary condition:

$$
\left.(\boldsymbol{\chi} \circ \boldsymbol{\Phi})\right|_{\Gamma_{0}}=\left.\boldsymbol{\Phi}_{0}\right|_{\Gamma_{0}} \quad \text { in } \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right) .
$$

Sketch of proof. Let $\boldsymbol{C}=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in W^{2, s}\left(\Omega ; \mathbb{S}_{>}^{3}\right)$ and $\boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$ be defined by a same orientation-preserving immersion $\boldsymbol{\Phi} \in \boldsymbol{W}^{3, s}(\Omega)$. Then Theorem 3 shows that:

$$
\mathbf{a}^{\sharp}(\boldsymbol{C})=\mathbf{a}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}^{\sharp}(\boldsymbol{C})=\mathbf{b}(\boldsymbol{\varphi}) \quad \text { in } \mathbb{L}^{p}\left(\Gamma_{0}\right)
$$

The conclusion follows by combining these relations with the following version of the rigidity lemma on a surface, due to [7]: If two immersions $\boldsymbol{\varphi} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$ and $\boldsymbol{\varphi}_{0} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$ satisfy $\mathbf{a}(\boldsymbol{\varphi})=\mathbf{a}\left(\boldsymbol{\varphi}_{0}\right)$ in $\mathbb{W}^{1, p}(\Omega)$ and $\mathbf{b}(\boldsymbol{\varphi})=\mathbf{b}\left(\boldsymbol{\varphi}_{0}\right)$ in $\mathbb{L}^{p}\left(\Gamma_{0}\right)$, and if Γ_{0} is connected, then there exists a proper isometry $\boldsymbol{\chi} \in \mathbf{R i g}_{+}\left(\mathbb{R}^{3}\right)$ such that $\boldsymbol{\varphi}=\boldsymbol{\chi} \circ \boldsymbol{\varphi}_{0}$ in $\boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)$.

Remark. In the above, we have only considered Sobolev spaces $\boldsymbol{W}^{k, s}(\Omega)$ for some integer k. However, all results of this section hold as well for orientation-preserving immersions $\boldsymbol{\Phi} \in \boldsymbol{W}^{2+\frac{1}{p}, p}(\Omega)$ for any $p>2$, since then:

$$
\boldsymbol{C}:=\nabla \boldsymbol{\Phi}^{T} \nabla \boldsymbol{\Phi} \in W^{1+\frac{1}{p}, p}\left(\Omega, \mathbb{S}_{>}^{3}\right) \quad \text { and } \quad \boldsymbol{\varphi}:=\left.\boldsymbol{\Phi}\right|_{\Gamma_{0}} \in \boldsymbol{W}^{2, p}\left(\Gamma_{0}\right)
$$

which in turn implies that:

$$
\mathbf{a}(\boldsymbol{\varphi}), \mathbf{a}^{\sharp}(\boldsymbol{C}) \in \mathbb{W}^{1, p}\left(\Gamma_{0}\right) \quad \text { and } \quad \mathbf{b}(\boldsymbol{\varphi}), \mathbf{b}^{\sharp}(\boldsymbol{C}) \in \mathbb{L}^{p}\left(\Gamma_{0}\right) .
$$

We refer to the extended article [6] for applications to nonlinear elasticity of the results presented in this Note. There, it will be shown in particular how the Dirichlet-Neumann boundary value problem of three-dimensional nonlinear elasticity can be completely recast as a boundary value problem with the tensor field $\boldsymbol{C}=\boldsymbol{\nabla} \boldsymbol{\Phi}^{T} \boldsymbol{\nabla} \boldsymbol{\Phi}$ as the sole unknown. Such a result thus complements the approach of [5], which was restricted to the homogeneous pure Dirichlet problem of three-dimensional nonlinear elasticity.

Acknowledgements

This work was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. 9041529, CityU 100710].

References

[1] T. Aubin, Some Nonlinear Problems in Riemannian Geometry, Springer, Berlin, 2010.
[2] Y. Choquet-Bruhat, C. DeWitt-Morette, M. Dillard-Bleick, Analysis, Manifolds, and Physics. Part I. Basics, second edition, North-Holland, Amsterdam, 1982.
[3] P.G. Ciarlet, An Introduction to Differential Geometry with Applications to Elasticity, Springer, Dordrecht, 2005.
[4] P.G. Ciarlet, C. Mardare, On rigid and infinitesimal rigid displacements in shell theory, J. Math. Pures Appl. 83 (2004) 1-15.
[5] P.G. Ciarlet, C. Mardare, Existence theorems in intrinsic nonlinear elasticity, J. Math. Pures Appl. 94 (2010) 229-243.
[6] P.G. Ciarlet, C. Mardare, Boundary conditions in nonlinear intrinsic elasticity, J. Math. Pures Appl. (2013), in press.
[7] S. Mardare, On Pfaff systems with L^{p} coefficients and their applications in differential geometry, J. Math. Pures Appl. 84 (2005) $1659-1692$.

[^0]: E-mail addresses: mapgc@cityu.edu.hk (P.G. Ciarlet), mardare@ann.jussieu.fr (C. Mardare).
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.05.001

