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Suppose f : S → P
1 is a fibration of genus g with 3 singular fibers and two of them are

semistable. We show that the Mordell–Weil group of f is finite, the surface S is rational
and 2g � −K 2

S � 4g − 4. We construct some examples to show that such fibrations exist
for infinitely many g.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit f : S → P
1 une fibration de genre g avec trois fibres singulières, dont deux d’entre

elles sont semi-stables. Nous montrons que le groupe de Mordell–Weil de f est fini, que
la surface S est rationnelle et que 2g � −K 2

S � 4g − 4. Nous construisons également des
exemples montrant qu’il existe de telles fibrations pour une infinité de g.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

Non-trivial semistable families f : X → P
1 of complex algebraic varieties over P

1 with minimal number s of singular
fibers have some remarkable arithmetic and geometric properties. For example, suppose f : S → P

1 is a non-trivial family
of semistable curves of genus g � 1 with s singular fibers, Beauville proves that s � 4 (see [1]). If g = 1 and s = 4, then f
must be a modular family. There are exactly 6 such families (see [2]). If g > 1, then s � 5 ([15], see also [5,9]), there are
only several examples with s = 5, g = 2 or 3. It is conjectured that the number of singular fibers is at least 6 if g is big
enough.

Denote by s0 the number of those singular fibers with non-compact Jacobians. Viehweg and Zuo prove that s0 � 4, and
s0 = 4 implies that f is a Shimura family defined over an algebraic number field (see [19]). Kukulies [4] shows that s0 � 5
if g is big enough. According to a conjecture of Oort (see [11], §5), Shimura families of curves f : S → C have bounded
genus g .

For non-semistable families f : S → P
1 of curves of genus g � 1, it is well known that s � 2. If f is non-isotrivial,

Beauville proves that s � 3 (see [1]). Furthermore, for any genus g � 2, he constructed an example of such family with 3
singular fibers. There are indeed many families with s = 3. In [12], U. Schmickler Hirzebruch classified all such fibrations
with g = 1, s = 2 or 3.
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Non-isotrivial families of curves of genus g � 2 over P
1 with 3 singular fibers have interesting arithmetic and geometric

properties. In fact, they are isomorphic to some families defined over algebraic number fields. This is quite similar to Belyi’s
famous theorem that an algebraic curve is isomorphic to a curve defined over a number field if the curve is a finite cover of
P

1 ramified over 3 points (see [3]). Families with some extremal properties can usually be constructed from families with 3
singular fibers (see [6]).

We denote by s1 the number of semistable singular fibers of f : S → P
1. If s = 3 and s1 = 2, Nguyen in [10] proves that

S is simply connected and pg(S) = q(S) = 0. He tends to believe that there are no families of curves of genus g � 2 with
s = 3 and s1 = 2.

The main purpose of this note is to try to understand the geometric and arithmetic structure of families of curves
f : S → P

1 of genus g � 2 with s = 3 and s1 = 2.

Theorem 1. Let f : S → P
1 be a relatively minimal family of curves of genus g with 3 singular fibers. If two of the singular fibers

are semistable, then S is a rational surface, the Mordell–Weil group of f is finite, the two semistable fibers consist of rational curves
(may be singular) as their components, and the normal crossing model of the non-semistable singular fiber is a tree of smooth rational
curves. Furthermore, we have:

2g � −K 2
S � 4g − 4.

For any positive integer n, we will construct examples of such fibrations of genus g = 2n such that −K 2
S = 4g − 4. It is

difficult to construct examples with small −K 2
S .

Let f : S → P
1 be a relatively minimal fibration of genus g with two singular fibers F1 and F2. Similarly to the proof of

Theorem 1, one can prove easily that S is a ruled surface, and:

g(F1) = g(F2) = q(S),

where g(Fi) is the geometric genus of Fi , i.e., the sum of the genera of the normalization of the components in Fi . (See
Remark 2.1.) But q(S) is not necessarily zero as Nguyen expected in [10]. For example, the curves Ct defined by y2 = x6 + t3

induce a family f : S → P
1 of curves of genus 2 with two singular fibers at 0 and ∞, each singular fiber containing a

smooth elliptic curve. Thus q(S) = 1 (see Example 2 in Section 3 for details).

2. Proof of Theorem 1

For a relatively minimal fibration f : S → C of genus g over a smooth curve C of genus b, it is convenient to use the
relative numerical invariants of the fibration:

K 2
f = c2

1(S) − 8(g − 1)(b − 1),

e f = c2(S) − 4(g − 1)(b − 1),

χ f = χ(OS) − (g − 1)(b − 1),

q f = q(S) − b.

Let F1, . . . , Fs be all singular fibers of f and li be the number of irreducible components of Fi . The rank of the Mordell–
Weil group of f is denoted by r. We have a formula to compute the rank r (see [13], Theorem 3):

r = ρ(S) − 2 −
∑

i

(li − 1),

where ρ(S) = rank NS(S) is the Picard number of S . Because the Mordell–Weil group is a finitely generated group, r = 0
implies that the group is finite.

For a singular fiber F , we denote by g(F ) the sum of the geometric genus of its components. We denote by F = σ ∗ F the
normal crossing model of F , i.e., σ is the blowing-ups of the singular points of F such that F = σ ∗ F is a normal crossing
divisor. N F := g − pa(F red), we have:

0 � N F � g.

Note that N F = g , i.e., pa(F red) = 0, if and only if F is a tree of smooth rational curves. If F is semistable, then F = F and
N F = 0. The relative invariants can be computed respectively by using the modular invariants κ( f ), λ( f ) and δ( f ):⎧⎪⎨

⎪⎩
K 2

f = κ( f ) + ∑s
i=1 c2

1(Fi),

e f = δ( f ) + ∑s
i=1 c2(Fi),

χ = λ( f ) + ∑s χ ,

(1)
f i=1 Fi
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where c2
1(F ), c2(F ) and χF are the Chern numbers of the singular fiber F , which are non-negative rational numbers. When

g � 2, one of them vanishes if and only if all the three vanish and this occurs if and only if F is semistable (see [14,16] or
[7]). So, for a semistable fibration f ,

K 2
f = κ( f ), e f = δ( f ), χ f = λ( f ).

The following formula, due to Lu, Tan, Yu and Zuo, is the main tool in our proof of Theorem 1:

Theorem 2. (See [8].) Let s0 be the number of singular fibers satisfying g(F ) < g. With the notations as above, we have:

2χ f = (g − q f )(2b − 2 + s0) −
s0∑

i=1

(
g(Fi) − q f

) −
(

h1,1(S) − 2q f b − 2 −
s∑

i=1

(li − 1)

)
+

s0∑
i=1

N F i
. (2)

Beauville in [1] proves that g(Fi)� q f . So:

A :=
s0∑

i=1

(
g(Fi) − q f

)
� 0. (3)

The non-negativity of the second part is proved in [8]:

B := h1,1(S) − 2q f b − 2 −
s∑

i=1

(li − 1) � 0. (4)

Note that ρ(S) � h1,1(S). For families f : S → P
1, we have b = 0, so r � B.

Lemma 2.1. Let f : S → P
1 be a relatively minimal fibration of genus g with two semistable singular fibers F1 and F2 , and one

non-semistable fiber F3 . Then κ(S) = −∞, and 4g − 4 � K 2
f � 6g − 8.

Proof. The inequality K 2
f � 4g − 4 is proved in [18]. The inequality K 2

f < 6g − 6 implies that κ(S) = −∞ (see also [18]). So

we only need to prove that K 2
f � 6g − 8.

We consider the semistable reduction f̃ : S̃ → P
1 of f : S → P

1, where the base change π : P1 → P
1 is a cyclic cover

totally ramified over f (F2) and f (F3).

S̃

f̃

Π

d:1 S

f

P
1 π

d:1 P
1

Then number s̃ of the singular fibers of f̃ is at most d + 2. By the strict canonical class inequality for f̃ : S̃ → C̃ = P
1 (see

[15,5,9]), we have:

K 2
f̃
< (2g − 2)

(
2g(C̃) − 2 + s̃

)
� 2d(g − 1).

So κ( f ) = 1
d κ( f̃ ) = 1

d K 2
f̃
< 2g − 2.

If c2
1(F3)� 4g − 5, then we have:

K 2
f = κ( f ) + c2

1(F3) < 2g − 2 + 4g − 5 = 6g − 7, (5)

hence K 2
f � 6g − 8.

If c2
1(F3) > 4g − 5, then by [7] (see also [17], Theorem 2.3), we have g = 2, c2

1(F3) = 3.2 and the dual graph of F3 is as
follows:

Here ◦ is a (−2)-curve and • is a (−3)-curve. The number is the multiplicity of the component in F3.
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In the process of the semistable reduction as above, we can take d = 10. Then we see that the semistable reduction F̃ of
F is smooth (see [20]). Hence f̃ has exactly d + 1 singular fibers, i.e., s̃ = d + 1 = 11. By the strict canonical class inequality,
we have:

K 2
f̃
< (2g − 2)

(
2g(C̃) − 2 + s̃

) = (2g − 2)(d − 1) = 18,

i.e., K 2
f̃
� 17. So κ( f )� 1

10 · 17 = 1.7. Hence K 2
f = κ( f ) + c2

1(F3) � 1.7 + 3.2 = 4.9, i.e., K 2
f � 4 = 6g − 8. This completes the

proof. �
Lemma 2.2. With the notations and assumptions as above, the Mordell–Weil group of f : S → P

1 is finite, i.e.,

r = ρ(S) − 2 −
∑

i

(li − 1) = 0. (6)

g(Fi) = q(S) for i = 1, 2, 3 and pa(F 3,red) = q(S).

Proof. Because S is a ruled surface, pg(S) = 0. We have χ f = g − q(S).
By (2),

χ f = 1

2

(
g − q(S)

)
(−2 + s0) − 1

2
A− 1

2
B + 1

2
C,

where:

A =
s0∑

i=1

(
g(F i) − q(S)

)
� 0, B = h1,1(S) − 2 −

s∑
i=1

(li − 1) � 0, C = N F 3
� 0.

Because pa(F 3,red)� g(F 3)� q f = q(S), we have:

C = N F 3
= g − pa(F 3) � g − q(S).

Note that s0 � s = 3. We have:

g − q(S) = χ f �
g − q(S)

2
− 1

2
A− 1

2
B + 1

2
C � g − q(S),

which implies that s0 = s = 3, A = B = 0, and C = g − q(S). From A = 0, we see that g(F i) = q(S). From r � B = 0, we get
r = 0. From C = g − q(S), we get pa(F 3,red) = q(S). �
Lemma 2.3. (See [10].) q(S) = 0.

Proof. (Beauville) Suppose q(S) > 0 and α : S → Alb(S) is the Albanese map. Because S is a ruled surface, α is a fibration
over a smooth curve B of genus q(S). The three singular fibers cannot be contracted by α, so in each singular fiber Fi , there
is a component Ci which maps to B surjectively. Denote by C̃i the normalization of Ci . Then g(C̃i) � q(S). On the other
hand, g(Fi) = q(S), so g(Ci) = q(S) and the other components are rational curves (maybe singular).

If q(S) > 1, then α : C̃i → B is an isomorphism. Hence C1 is a section of α, i.e., C1 Fb = 1 for a general fiber Fb of α. The
other components of F1 are rational curves, which must be contracted by α. Hence F1 Fb = C1 Fb = 1, and the smooth fibers
of f are isomorphic to B , this is a contradiction because f is not isotrivial.

If q(S) = 1, similar to the proof above, we can assume that π : C̃1 → B induced by α is an unramified finite cover of
degree d > 1. We consider the pullback fibration α̃ : S̃ = S ×B C̃1 → C̃1 of α under the base change π .

S̃

α̃

Π

d:1 S

α

C̃1
π

d:1 B

Because Π−1(C1) contains a section of α̃, and g(C̃1) = q(S) = 1, we know that the geometric genus of Π−1(C1) is at least 2.
Let f̃ = Π ◦ f : S̃ → P

1 and F̃ i = Π∗(Fi). Then g( F̃1) � 2. Note that only one singular fiber F̃3 of f̃ is not semistable.
We claim that f̃ has connected fibers. Otherwise, we consider the Stein factorization,

S̃

f̃

ψ
C

ϕ

1

P
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Fig. 1. Fig. 2.

Because only one singular fiber F̃3 of f̃ may have multiple components, we see that ϕ is a finite cover of degree degϕ > 1
ramified at worst over one point f̃ ( F̃ ) on P

1. Such a finite cover ϕ does not exist. Thus f̃ has connected fibers.
Now we know that f̃ is a fibration with 3 singular fibers F̃1, F̃2 and F̃3, two fibers F̃1 and F̃2 are semistable fibers. From

the discussion above, we get:

g( F̃ i) = q( S̃) � 1,

which contradicts to g( F̃ i) = q( S̃)� 2. �
Finally, from Lemma 2.2, pa(F 3,red) = 0, thus F 3 is a tree of smooth rational curves.

Remark 2.1. Suppose f : S → P
1 is a relatively minimal fibration of genus g � 2 with two singular fibers F1 and F2. Similar

to the proof above, we see that S is a ruled surface, and

s0 = 2, A = B = 0, pa(F i,red) = g(F i) = q(S), i = 1,2.

We have seen in the introduction that q(S) is not necessarily zero.

3. Examples

Example 1. Fibrations f : S → P
1 with g = 2n , s = 3 and s1 = 2, where n = 0,1,2, . . . .

Let C0 be a curve in P
1 × P

1 defined by t − x2 = 0. Let La be the horizontal line defined by x = a, and Tb be the vertical
line defined by t = b. (See Fig. 1.)

C0 meets the fiber T1 transversely at two points. Choose one point (x0,1) ∈ C0. We consider a double cover π1 : P1 =
P

1 × P
1 → P0 = P

1 × P
1 ramified over two horizontal lines x = 0 and x = x0. Let C1 = π∗

1 C0 ⊂ P1. Then #(C1 ∩ T0) = 1,
#(C1 ∩ T1) = 3, and #(C1 ∩ T∞) = 2. C1 is a curve in P1 as follows. (See Fig. 2.)

C1 meets T1 transversely at two points. Choose one point (x1,1) ∈ C1. We consider the double cover π2 : P2 = P
1 ×P

1 →
P1 = P

1 × P
1 ramified over two horizontal lines x = 0 and x = x1. Let C2 = π∗

2 C1. Then #(C2 ∩ T0) = 1, #(C2 ∩ T1) = 5, and
#(C1 ∩ T∞) = 4. C2 meets T1 transversely at two points.

Repeating this process, we get a curve Cn of type (2n+1,1) in Pn = P
1 × P

1 such that:

#(Cn ∩ T0) = 1, #(Cn ∩ T1) = 2n + 1, #(Cn ∩ T∞) = 2n,

Pn → Pn−1 → ·· · → P2 → P1 → P0.

Let

Bn = Cn + T0 + L0 + Lxn ≡ (
2n+1 + 2,2

)
.

Bn is an even divisor with only ADE singularities. Let Πn : Σn → P
1 ×P

1 be the double cover branched along Bn , and let Sn

be the minimal resolution of singularities of Σn .

Sn
σ

Σn

Πn

P
1 × P

1

The second projection P
1 ×P

1 → P
1 induces fibration fn : Sn → P

1 of genus g = 2n with s = 3 singular fibers F0, F1 and F∞ ,
and F1 and F∞ are semistable. By a direct computation, we see that Sn is rational and:

−K 2
Sn

= 4g − 4.

Example 2. We consider the family of curves Ct of genus 2 defined by y2 = x6 + t3 for t ∈ P
1. We consider P

1 × P
1 as

the compactification of C × C with coordinate (x, t). Let X → P
1 × P

1 be a double cover ramified over a curve defined by
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x6 + t3 = 0 and P
1 × {∞}. Let S be the minimal resolution of the two singularities of X over (0,0) and (∞,∞). Then we

get a fibration f : S → P
1 of curves of genus 2 with two singular fibers at t = 0 and ∞. The two singular fibers have the

same type. Here is the canonical resolution.
The fiber F0 at t = 0.

The fiber F∞ at t = ∞. The singular point of the branch locus is at (∞,∞). Choose the affine coordinates u = 1
x = 0 and

s = 1
t = 0. Then the singular point is at (0,0).

where σi and σ ′
i are blowing-ups and blowing-downs, and π and π ′ are the double cover. From the computation above,

each singular fiber contains a smooth elliptic curve E2. Thus q(S) = 1.
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