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For a pair of conjugate trigonometric polynomials C(t) = ∑N
j=1 a j cos jt, S(t) =∑N

j=1 a j sin jt, normalized by the condition
∑N

j=1 a j = 1, the following extremal value is
found:

sup
a1,...,aN

min
t

{
C(t): S(t) = 0

} = − tan2 π

2(N + 1)
.

An application of this result in the control theory for nonlinear discrete systems is shown.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Pour un couple de polynômes trigonométriques C(t) = ∑N
j=1 a j cos jt, S(t) = ∑N

j=1 a j sin jt,

normalisés par la condition
∑N

j=1 a j = 1, on a la formule extrémale suivante :

sup
a1,...,aN

min
t

{
C(t): S(t) = 0

} = − tan2 π

2(N + 1)
.

On donne une application de ce résultat en théorie du contrôle à des systèmes non li-
néaires discrets.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Motivation

The problem of optimal influence on a chaotic regime is the most fundamental in nonlinear dynamics (cf. [2,7] or [5] for
recent updates). Namely, let us consider an open scalar nonlinear discrete system:

xn+1 = fh(xn), xn ∈R
1, n = 1,2, . . . , (1)

with a non-stable equilibrium point x∗ . It is assumed that the function fh depends on a finite number of parameters h and
that for every admissible set of these parameters the function is defined and differentiable on a certain bounded interval
and maps it into itself. The equilibrium point x∗ and a multiplier μ = ( fh)′(x∗) are dependent on the parameters. It is
assumed that μ ∈ (−μ∗,−1], μ∗ > 1 and that the phenomenon of quasi-dynamical chaos is observed. The problem under
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investigation is to suppress the chaos by stabilizing the equilibrium x∗ for all admissible values of the parameters using the
control:

u = −
N−1∑
j=1

ε j
(

fh(xn− j+1) − fh(xn− j)
)
, 0 < ε j < 1, j = 1, . . . , N − 1, (2)

in such a way that the depths of the used prehistory N∗ = N − 1 will be minimal. Note that synchronization makes the
control (2) to be zero, i.e. the closed system takes a control-free form. That means that the equilibria for the unclosed and
closed systems are the same.

2. Statement of the problem

The characteristic polynomial for the linear part of the closed system (1) and (2) has the form:

λN + k
(
a1λ

N−1 + · · · + aN
)
, (3)

where a1 = 1 − ε1, a j = ε j−1 − ε j , j = 2, . . . , N − 1, aN = εN−1, k = |μ|. It is clear that a1 + · · · + an = 1.
A change in parameter k could produce series of bifurcations in the system, leading to the appearance of a chaotic

attractor. The first bifurcation value of the parameter is related to the momentum of losing stability. This value is related
with the region of Schur’s stability for the polynomials (3) in the space of parameter k. For k = 0, all the polynomials
are stable. The zeros of the polynomials continuously depend on the parameter. Therefore, with some (k1 > 0, k2 > 0) if
k ∈ (−k1,k2), then the family (3) is stable, while for k = k2 + ε or k = −k1 − ε instability occurs.

It is a point of interest to find a direction determined by the vector of the coefficients (a1, . . . ,an) for which the length
of the connected component of the stability region will be maximal. In other words, we would like to maximize the length
of robust stability k1 + k2 and to find the precise values of k1 and k2. Finding the minimal value for N∗ is the dual problem
to finding the maximal value of k1 + k2.

3. Connection with harmonic analysis

Given the interval (−μ∗,−1) both problems reduce to determining the minimal power of a polynomial and its coeffi-
cients in such a way that all zeros will be within the unit disc {|z| < 1} for any k ∈ (0, |μ∗|).

Since on the boundary of the stability region:

1

k
+

N∑
j=1

a je
−i jt = 0 (4)

we need to evaluate the quantity:

J N = sup
a1+···+an=1

[
min

t

{
�

(
N∑

j=1

a je
−i jt

)
: �

(
N∑

j=1

a je
−i jt

)
= 0

}]
. (5)

Note that J N � 0. The relation (4) implies that the condition | J N | · k < 1 guaranties the stability of the polynomials (3) for
all k ∈ (0, |μ∗|). With a little help from harmonic analysis, one can check that the choice a j = 1

N , j = 1, . . . , N gives us the
estimate | J N | � 1

N . So, we have got a fundamental fact – given the interval (−μ∗,−1) one can stabilize the equilibrium in (1)
using the prehistory of the length of order |μ∗|. Surprisingly, it turns out that the uniform choice of the coefficients is not the
optimal one.

4. Theorem. The following statements are valid:

(i) J N = − tan2 π

2(N + 1)
∼ − 1

N2
; N∗ =

[
π

2 cot−1 √
μ∗

]
− 1.

(ii) The interval (−k1,k2) has the form (−1, 1
| J N | ) and is of length csc2 π

2(N+1)
.

(iii) The optimal coefficients are unique and are defined by the formulas:

ε j =
N∑

k= j+1

ak, j = 1, . . . , N − 1,

where

a j = 2 · tan
π

2(N + 1)
·
(

1 − j

N + 1

)
· sin

π j

N + 1
, j = 1, . . . , N.
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5. Example. Let fh : [0,1] → [0,1] be a one-parameter logistic map:

fh(x) = h · x · (1 − x), 0 � h � 4.

For h ∈ (3,4], the equilibrium point x∗ = 1 − 1
h is not stable and the multiplier μ ∈ [−2,−1). Therefore, π

2 cot−1
√

2
≈ 2.55

and the minimal depth of prehistory with the delayed feedback is N∗ = 1. The optimal strength coefficient ε0
1 = 1

3 , and

the optimal control is u = − 1
3 ( fh(xn) − fh(xn−1)), i.e. the closed system xn+1 = fh(xn) + u has stable equilibrium points for

h ∈ (3,4].

6. The sketch of the proof

(The whole proof can be found in [3].) Let:

C(t) =
N∑

j=1

a j cos jt and S(t) =
N∑

j=1

a j sin jt.

We need to solve the following extremal problem. Find:

ρ ≡ sup
a1+···+aN =1

min−π�t�π

{
C(t): S(t) = 0

}
.

Since S(t) is an odd function and C(t) is an even function, then the above minimum can be taken over the set 0 � t � π .
Let T denote the set of points where S(t) changes sign, and let:

ρ1 = sup
a1+···+aN =1

min
0�t�π

{
C(t): t ∈ T ∪ {π}}.

It is not difficult to show that the supremum is achieved, i.e. there is a pair of optimal polynomials C0(t) and S0(t) such
that:

ρ1 = min
0�t�π

{
C0(t): t ∈ T 0 ∪ {π}}.

It turns out, and it is a difficult part of the proof, that T 0 = ∅; therefore, ρ1 = C0(π) and S0(t) � 0 for 0 < t < π .
Now, let us use the following presentation of S(t) which is crucial:

S(t) = sin t · (γ1 + 2γ2 cos t + · · · + 2γN cos(N − 1)t
)
.

Here γs = ∑
a j , and the summation runs on indices s � j � N of same parity with s. This implies that γ1 +γ2 = ∑N

j=1 a j = 1
and C(π) = γ2 − γ1. So,

ρ1 = max
γ1,...,γN

{−γ1 + γ2: γ1 + γ2 = 1, S(t)/sin t � 0, 0 < t < π
}
.

Since S(t)/sin t is a non-negative even trigonometric polynomial, the well-known Fejér inequality [4] (see also [6, 6.7,
Problem 52]) implies that:

|γ2|� cos
π

N + 1
· |γ1| (6)

therefore

ρ1 � ρ2 = max
γ1,γ2

{
−γ1 + γ2: γ1 + γ2 = 1, |γ2|� cos

π

N + 1
· |γ1|

}
.

The maximum in ρ2 is achieved for:

γ 0
1 = 1

1 + cos π
N+1

, γ 0
2 = cos π

N+1

1 + cos π
N+1

, (7)

and is equal to:

ρ2 = −1 − cos π
N+1

1 + cos π
N+1

= − tan2 π

2(N + 1)
.

Since γ 0
1 and γ 0

2 turn the Fejér inequality (6) into an equality, there is (a unique) trigonometric polynomial S0 with the
coefficients determined by γ 0 and γ 0 such that S0(t)/sin t � 0, 0 < t < π , therefore ρ1 = ρ2. Now, let:
1 2
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aε
1 = a0

1 + ε

1 + ε
, aε

j = a0
j

1 + ε
, j � 2, Sε(t) =

N∑
j=1

aε
j sin( jt), Cε(t) =

N∑
j=1

aε
j cos( jt).

Since aε
1 + · · · + aε

N = 1 one can conclude that ρ � min0�t�π {Cε(t): Sε(t) = 0}. It is easy to verify that Sε(t) = S0(t)
1+ε +

ε
1+ε sin t , Cε(t) = C0(t)

1+ε + ε
1+ε cos t; therefore, for all t ∈ (0,π) and ε > 0, we have Sε(t) > 0. Since Sε(π) = 0, we have:

ρ � Cε(π) = C0(π)

1 + ε
− ε

1 + ε

and letting ε → 0+ , one gets ρ � C0(π) = − tan2 π
2(n+1)

= ρ1. On the other hand, min{C(t): t ∈ T ∪ {π}}� min{C(t): S(t) =
0}; therefore ρ1 � ρ , so ρ = ρ1, while ρ1 = ρ2, which proves (i). The statement (ii) is a direct consequence of (i).

Finally, starting from (7) one can get (iii). Similar computations can be found in [1].
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