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Let ω be a simply-connected domain in R
2 and let (Eαβ) and (Fαβ) be two symmetric 2×2

matrix fields with components in L2(ω). In this Note, we identify nonlinear compatibility
conditions “of Donati type” that the components Eαβ and Fαβ must satisfy in order that
there exists a vector field (η1, η2, w) ∈ H1

0(ω) × H1
0(ω) × H2

0(ω) such that:

1

2
(∂αηβ + ∂βηα + ∂α w∂β w) = Eαβ and ∂αβ w = Fαβ in ω.

The left-hand sides of these relations are the components of tensors found in the
Kirchhoff–von Kármán–Love theory of nonlinearly elastic plates.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

r é s u m é

Soit ω un domaine simplement connexe de R
2 et soient (Eαβ) et (Fαβ) deux champs

de matrices 2 × 2 symétriques dont les composantes sont dans L2(ω). Dans cette Note,
on identifie et justifie des conditions non linéaires de compatibilité « de type Donati »
que doivent satisfaire les composantes Eαβ et Fαβ afin qu’il existe un champ de vecteurs
(η1, η2, w) ∈ H1

0(ω) × H1
0(ω) × H2

0(ω) tel que :

1

2
(∂αηβ + ∂βηα + ∂α w∂β w) = Eαβ et ∂αβ w = Fαβ dans ω.

Les membres de gauche de ces relations sont les composantes de tenseurs trouvés dans la
théorie de Kirchhoff–von Kármán–Love des plaques non linéairement élastiques.

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
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1. Preliminaries

Greek indices vary in {1,2} and the convention summation with respect to repeated indices is used. A domain in R
2

is a bounded, open, and connected subset ω of R
2 with a Lipschitz-continuous boundary ∂ω, the set ω being locally on

the same side of ∂ω. Partial derivatives of the first, second, and third, order of functions of y = (yα) ∈ ω are denoted
∂α := ∂/∂ yα , ∂αβ := ∂2/∂ yα∂ yβ , and ∂αβσ := ∂3/∂ yα∂ yβ∂ yσ ; the same notations are used for partial derivatives in the
sense of distributions.

Vector fields and matrix fields, and spaces of vector fields, defined over ω are denoted by boldface letters. The usual
Sobolev spaces over ω are denoted Hm(ω), m ∈ Z, and Hm

0 (ω), m � 1; the norm in Hm(ω), m ∈ Z, is denoted ‖ · ‖m,ω; in
particular then, ‖ ·‖0,ω is the norm of H0(ω) = L2(ω). The notation L

2(ω) designates the space of all 2×2 symmetric matrix
fields with components in L2(ω). If S = (Sαβ) is a 2 × 2 matrix field with smooth enough components defined over ω, its
divergence div S is the vector field defined by (div S)α = ∂β Sαβ .

If X and Y are two (real) vector spaces and A is a linear operator from X to Y ,

Im A := {y ∈ Y ; y = Ax for at least one x ∈ X} and Ker A := {x ∈ X; Ax = 0}.
The notation X ′ 〈·,·〉X designates the duality between a normed vector space X and its dual X ′ .
In the classical Kirchhoff–von Kármán–Love theory of nonlinearly elastic plates (see, e.g., Chapters 4 and 5 in [2]), the

unknown displacement field of the middle surface ω of the plate minimizes an energy whose integrand contains a positive-
definite quadratic function of the change of metric and change of curvature tensors, respectively defined by

Eαβ := 1

2
(∂αηβ + ∂βηα + ∂α w∂β w) and Fαβ := ∂αβ w, (1)

for an arbitrary displacement field (η1, η2, w) ∈ H1
0(ω) × H1

0(ω) × H2
0(ω) (we consider here plates that are clamped over

their entire lateral face).
In the intrinsic approach to the same theory, the matrix fields (Eαβ) ∈ L

2(ω) and (Fαβ) ∈ L
2(ω) are considered as the sole

unknowns. There thus arises the question as to whether there exist suitable compatibility conditions that the components Eαβ

and Fαβ of these matrix fields should satisfy in order that there exists a vector field (η1, η2, w) ∈ H1
0(ω) × H1

0(ω) × H2
0(ω)

satisfying (1). As shown in [6], if the domain ω is simply-connected, the nonlinear Saint-Venant compatibility conditions:

∂στ Eαβ + ∂αβ Eστ − ∂ασ Eβτ − ∂βτ Eασ + Fαβ Fστ − Fασ Fβτ = 0 in H−2(ω),

∂σ Fαβ − ∂β Fασ = 0 in H−1(ω),

constitute one possible answer to this question. The objective of this Note is to give (cf. Theorem 4.2) a different answer
to the same question, this time in the form of variational equations, which as such constitute examples of nonlinear Do-
nati compatibility conditions (a general presentation of Saint-Venant and Donati compatibility conditions as they arise in
three-dimensional linearized elasticity is found in Chapter 6 in [3]).

Complete proofs and an application to the intrinsic nonlinear plate theory will be found in [5].

2. An existence theorem for an Airy-function

The following result is a “weak” version (already used in [6]) of a classical result for smooth functions. Its proof is based
on the two-dimensional version of the weak Poincaré lemma due to [4] and then given a substantially simpler proof in [10];
cf. also Theorem 6.17-4 in [3].

Theorem 2.1. Let ω be a simply-connected domain in R
2 , and let there be given a matrix field (Fαβ) ∈ L

2(ω) that satisfies

∂σ Fαβ − ∂β Fασ = 0 in H−1(ω).

Then there exists a function ϕ ∈ H2(ω), unique up to the addition of a polynomial of degree � 1, such that

∂αβϕ = Fαβ in L2(ω).

Theorem 2.1 can be immediately recast as an existence result of an ad hoc Airy function (denoted ϕ in the next theorem)
under low regularity assumptions. As such, it complements Theorem 2 of [7], where the existence of an Airy function was
established, again in the space H2(ω), but for non-simply-connected domains, under the assumption that the tensor field
noted S in the next theorem satisfies in addition the usual global equilibrium equations.

Theorem 2.2. Let ω be a simply-connected domain in R
2 , and let there be given a matrix field S = (Sαβ) ∈ L

2(ω) that satisfies

div S = 0 in H−1(ω).
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Then there exists a function ϕ ∈ H2(ω), unique up to the addition of a polynomial of degree � 1, such that

∂11ϕ = S22, ∂12ϕ = −S12, ∂22ϕ = S11 in L2(ω). (2)

A function ϕ satisfying the relations (2) is called an Airy function associated with the matrix field S .

3. Linear Donati compatibility conditions for linearly elastic plates

For convenience, we consider separately the existence of the “horizontal” components ηα , and that of the “vertical”
component w of the unknown vector field.

Theorem 3.1. Let ω be a domain in R
2 and let there be given a matrix field (eαβ) ∈ L

2(ω) that satisfies∫
ω

eαβ sαβ dy = 0 for all (sαβ) ∈ L
2(ω) such that ∂β sαβ = 0 in H−1(ω). (3)

Then there exists a vector field (ηα) ∈ H1
0(ω) × H1

0(ω) such that

1

2
(∂αηβ + ∂βηα) = eαβ in L2(ω),

and such a vector field (ηα) is uniquely determined.

Proof. See, e.g., [1], or [8] and [9]. �
Theorem 3.2. Let ω be a domain in R

2 and let there be given a matrix field (Fαβ) ∈ L
2(ω) that satisfies∫

ω

Fαβ Tαβ dy = 0 for all (Tαβ) ∈ L
2 such that ∂αβ Tαβ = 0 in H−2(ω).

Then there exists a function w ∈ H2
0(ω) such that

∂αβ w = Fαβ in L2(ω), (4)

and this function is uniquely determined.

Sketch of proof. Let the continuous linear operator H : H2
0(ω) → L

2(ω) be defined by

H w =
(

∂11 w ∂12 w
∂21 w ∂22 w

)
∈ L

2(ω) for each w ∈ H2
0(ω).

Then one shows that Im H is a closed subspace of L2(ω), and that the dual operator of H is div div : L2(ω) → H−2(ω). The
conclusion then follows from Banach closed range theorem. �

Relations (3) and (4) constitute the linear Donati compatibility conditions corresponding to the Kirchhoff–Love theory of
linearly elastic plates. Note that they hold regardless of whether the domain ω is simply-connected.

4. Nonlinear Donati compatibility conditions for nonlinearly elastic plates

The Green’s formula (5) established in the next theorem is crucial to our subsequent analysis.

Theorem 4.1. For all functions w ∈ H2
0(ω) and ϕ ∈ H2(ω),

∫
ω

(∂11 w∂22 w − ∂12 w∂12 w)ϕ dy =
∫
ω

{
−1

2
(∂1 w)2∂22ϕ − 1

2
(∂2 w)2∂11ϕ + ∂1 w∂2 w∂12ϕ

}
dy. (5)

Sketch of proof. Both sides of (5) being continuous functions of (w,ϕ) ∈ H2
0(ω) × H2(ω), it is enough to establish (5) for

all (w,ϕ) ∈D(ω) × H2(ω). To this end, one uses the integration by parts formulas in Sobolev spaces. �
The next theorem constitutes the main result of this Note.
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Theorem 4.2. Let ω be a simply-connected domain in R
2 . Given a matrix field S ∈ L

2(ω) that satisfies div S = 0 in H−1(ω), there
exists a unique function ϕ ∈ H2(ω) such that (cf. Theorem 2.2):

∂11ϕ = S22, ∂12ϕ = −S12, ∂22ϕ = S11 in L2(ω) and

∫
ω

ϕ dy =
∫
ω

∂αϕ dy = 0.

Let

Φ : {S ∈ L
2(ω); div S = 0 in H−1(ω)

} →
{
ψ ∈ H2(ω);

∫
ω

ψ dy =
∫
ω

∂αψ dy = 0

}

denote the mapping defined in this fashion, i.e., by Φ(S) := ϕ .
Let there be given two matrix fields (Eαβ) ∈ L

2(ω) and F = (Fαβ) ∈ L
2(ω) that satisfy

∫
ω

Fαβ Tαβ dy = 0 for all T = (Tαβ) ∈ L
2(ω) such that div div T = 0 in H−2(ω), (6)

∫
ω

{
Eαβ Sαβ + (det F )Φ(S)

}
dy = 0 for all S = (Sαβ) ∈ L

2(ω) such that div S = 0 in H−1(ω). (7)

Then there exists a vector field (η1, η2, w) ∈ H1
0(ω) × H1

0(ω) × H2
0(ω) such that

1

2
(∂αηβ + ∂βηα + ∂α w∂β w) = Eαβ in L2(ω),

∂αβ w = Fαβ in L2(ω),

and such a vector field (η1, η2, w) is uniquely determined.

Proof. Relation (6) shows that there exists a uniquely determined function w ∈ H2
0(ω) such that (cf. Theorem 3.2)

Fαβ = ∂αβ w in L2(ω). (8)

Given any matrix field S = (Sαβ) ∈ L
2(ω) such that div S = 0 in H−1(ω), there exists a uniquely determined function

ϕ ∈ H2(ω) such that (cf. Theorem 2.2):

S11 = ∂22ϕ, S12 = −∂12ϕ, S22 = ∂11ϕ in L2(ω).

Therefore, for any such matrix field S ,∫
ω

Eαβ Sαβ dy =
∫
ω

{E11∂22ϕ + E22∂11ϕ − 2E12∂12ϕ}dy,

and (cf. (8))∫
ω

(det F )Φ(S)dy =
∫
ω

(
F11 F22 − (F12)

2)ϕ dy

=
∫
ω

{
(∂11 w∂22 w − ∂12 w∂12 w)ϕ dy

}
.

The left-hand side of relation (6) can thus be rewritten as (cf. (5)):∫
ω

{
Eαβ Sαβ + (det F )Φ(S)

}
dy

=
∫
ω

{(
E11 − 1

2
(∂1 w)2

)
∂22ϕ − 2

(
E12 − 1

2
∂1 w∂2 w

)
∂12ϕ +

(
E22 − 1

2
(∂2 w)2

)
∂11ϕ

}
dy

=
∫ {(

E11 − 1

2
(∂1 w)2

)
S11 + 2

(
E22 − 1

2
∂1 w∂2 w

)
S12 +

(
E22 − 1

2
(∂2 w)2

)
S22

}
dy.
ω
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Since this last relation holds for all S = (Sαβ) ∈ L
2(ω) such that div S = 0 in H−1(ω), there exists a uniquely determined

vector field (ηα) ∈ H1
0(ω) × H1

0(ω) such that (cf. Theorem 3.1):

Eαβ − 1

2
∂α w∂β w = 1

2
(∂αηβ + ∂βηα) in L2(ω).

This completes the proof. �
Relations (6) and (7) constitute the nonlinear Donati compatibility conditions corresponding to the Kirchhoff–von Kármán–

Love theory of nonlinearly elastic plates. Note that, when properly extended, they can also cover the case where the domain ω
is not simply-connected; cf. [5].

Finally, note that, as expected, the linearization of the nonlinear Donati compatibility conditions (7) reduce to the linear ones
(cf. (3)).
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