

Algebraic Geometry

Contents lists available at SciVerse ScienceDirect

C. R. Acad. Sci. Paris, Ser. I

www.sciencedirect.com

On Cremona transformations of \mathbb{P}^3 with all possible bidegrees

Sur les transformations de Cremona de \mathbb{P}^3 de tous les degrés possibles

Ivan Pan¹

Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay

ARTICLE INFO	ABSTRACT
Article history: Received 7 April 2013 Accepted after revision 20 June 2013 Available online 23 July 2013 Presented by Jean-Pierre Serre	For every orderer pair (d, e) of integer numbers $d, e \ge 2$, such that $\sqrt{d} \le e \le d$, we construct a birational map $\mathbb{P}^3 \gg \mathbb{P}^3$ defined by homogeneous polynomials of degree d whose inverse map is defined by homogeneous polynomials of degree e . © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É
	Pour chaque paire ordonnée (d, e) d'entiers satisfaisant $d, e \ge 2$ et $\sqrt{d} \le e \le d$, nous construisons une application birationnelle $\mathbb{P}^3 \gg \mathbb{P}^3$ définie par des formes de degrés d , dont l'application inverse est définie par des formes de degré e .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this note is to correct a mistake in the proof of theorem [4, Théorème 2.2]. The proof of that theorem depends on the example [4, Exemple 2.1] which is wrong.

We propose an explicit construction of Cremona transformations of \mathbb{P}^3 (see Section 2, especially Lemma 2) that, together with their inverse maps, provide all possible bidegrees (Theorem 3 and Corollary 4).

2. Main construction and results

Let \mathbb{P}^3 be the projective space over an algebraically closed field *k* of characteristic zero; we fix homogeneous coordinates *w*, *x*, *y*, *z* on \mathbb{P}^3 .

We recall that a Cremona transformation of \mathbb{P}^3 is a birational map $F:\mathbb{P}^3 - - \mathbb{P}^3$. We say F has bidegree (d, e) when F and its inverse F^{-1} are defined by homogeneous polynomials, without non-trivial common factors, of degrees d and e respectively; notice that in this case F^{-1} has bidegree (e, d). If $V \subset \mathbb{P}^3$ is a dense open set over which F^{-1} is defined and injective and $L \subset \mathbb{P}^3$ is a line with $L \cap V \neq \emptyset$, then e is the degree of the closure of $F^{-1}(L \cap V)$; one deduces that $\sqrt{d} \leq e \leq d$ (see for example [4, §1]).

If $X \subset \mathbb{P}^2$ is a curve and $p \in \mathbb{P}^2$ we denote by $\operatorname{mult}_p(X)$ the multiplicity of X at p. If $S, S' \subset \mathbb{P}^3$ are surfaces and $C \subset S \cap S'$ is an irreducible component, we denote by $\operatorname{mult}_C(S, S')$ the intersection multiplicity of S and S' along C.

Consider a rational map $T : \mathbb{P}^3 - - \mathbb{P}^3$ defined by:

E-mail address: ivan@cmat.edu.uy.

¹ Partially supported by the Agencia Nacional de Investigadores of Uruguay.

¹⁶³¹⁻⁰⁷³X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. http://dx.doi.org/10.1016/j.crma.2013.06.003

 $T = (g : at_1 : at_2 : at_3).$

where $t_1, t_2, t_3 \in k[x, y, z]$ are homogeneous of degree r, without non-trivial common factors, and $g, q \in k[w, x, y, z]$ are homogeneous of degrees d, d-1, with $d \ge r \ge 1$ and g irreducible. We know that T is birational if $\tau := (t_1 : t_2 :$ t_3 : $\mathbb{P}^2 - - \mathbb{P}^2$ is birational and g, q vanish at o = (1:0:0:0) with orders d-1 and $\geq d-r-1$, respectively (see [3, Proposition 2.2]).

On the other hand, consider 2r - 1 points $p_0, p_1, \ldots, p_{2r-2}$ in \mathbb{P}^2 , $r \ge 2$, satisfying the following condition:

There exist curves $X_r, Y_{r-1} \subset \mathbb{P}^2$ of degrees r, r-1, respectively, with X_r irreducible, such that $\operatorname{mult}_{p_0}(X_r) = r-1$, $mult_{p_0}(Y_{r-1}) \ge r-2$ and $p_i \in X_r \cap Y_{r-1}$ for i = 1, ..., 2r-2. (I)

Hence [3] also implies that there exists a plane Cremona transformation defined by polynomials of degree r with a point of multiplicity r - 1 at p_0 and passing through p_1, \ldots, p_{2r-2} with multiplicity 1: indeed, if we consider $p_0 = (1:0:0)$ and take polynomials t_1 and f, of degrees r and r-1, defining X_r and Y_{r-1} respectively, then $(t_1: yf: zf): \mathbb{P}^2 - \rightarrow \mathbb{P}^2$ is a Cremona transformation as required; such a transformation is said to be associated with the points $p_0, p_1, \ldots, p_{2r-2}$.

Remark 1. The transformations satisfying condition (I) are general cases of the so-called de Jonquières transformations (see [2] or [1, Definition 2.6.10]). We note that the Enriques criterion [1, Theorem 5.1.1] may be used to prove that a set of 2r-2 points $p_0, p_1, \ldots, p_{2r-2}$ with assigned multiplicities $r-1, 1, \ldots, 1$, and satisfying condition (I) defines a de Jonquières transformation.

Set r = d and take an irreducible homogeneous polynomial g = wA(x, y, z) + B(x, y, z) of degree d; that is, $q \in k - \{0\}$ in the considerations above. Denote by $T_{g,\tau}$ the Cremona transformation defined by:

$$T_{g,\tau} = (g:t_1:t_2:t_3), \tag{1}$$

where $\tau = (t_1 : t_2 : t_3)$ is associated to 2d - 1 points satisfying condition (I). We have:

Lemma 2. Let $d \ge 2$ be an integer number. Then:

- (a) there exist g and τ such that $T_{g,\tau}$ has bidegree (d, 2d 1 m), for $0 \le m \le d 1$; (b) there exist g and τ such that $T_{g,\tau}$ has bidegree $(d, d^2 \ell^2 m)$, for $0 \le \ell < d 1$ and $0 \le m \le 2d 2$.

Proof. We identify \mathbb{P}^2 with the plane $\{w = 0\} \subset \mathbb{P}^3$ and consider a point $p_0 \in \mathbb{P}^2$. Without loss of generality, we may suppose that $p_0 = (0:1:0:0)$. We recall o = (1:0:0:0).

In order to prove (a) we first choose $g \in k[w, x, y, z]$ to be a homogeneous polynomial that vanishes along the line op_0 with order d-1 and is general with respect to this condition. In other words, one has g = wA + B with:

$$A = A_{d-1}(y, z),$$
 $B = xB_{d-1}(y, z) + B_d(y, z),$

where $A_i, B_i \in k[y, z]$ are general homogeneous polynomials of degree *i*. Hence A = 0 defines a union of d - 1 distinct lines in \mathbb{P}^2 passing through p_0 and B = 0 defines an irreducible curve of degree d with an ordinary singular point of multiplicity d-1 at p_0 .

Notice that, by construction, in the open set $\mathbb{P}^2 - \{p_0\}$, curves A = 0 and B = 0 intersect at $d(d-1) - (d-1)^2 = d-1$ points; in particular, if $m \leq d-1$, there exist *m* points $p_1, \ldots, p_m \in \mathbb{P}^2$ satisfying $A(p_i) = B(p_i) = 0$ for $1 \leq i \leq m$. We consider *m* such points and choose 2d - 1 - m points $p_{m+1}, \ldots, p_{2d-2} \in \mathbb{P}^2$ with $A(p_j) \neq 0$ and $B(p_j) = 0$, for all j = 0 $m + 1, \ldots, 2d - 2$, such that $p_0, p_1, \ldots, p_{2d-2}$ satisfy (I). Let τ be a plane Cremona transformation associated with these 2d - 1 points.

Now we consider a Cremona transformation $T_{g,\tau}: \mathbb{P}^3 - - \mathbb{P}^3$ as in (1). A general member in the linear system defining $T_{g,\tau}$ is an irreducible surface of degree d, S say, with an equation of the form:

$$ag + a_1t_1 + a_2t_2 + a_3t_3 = 0$$
,

where $a, a_1, a_2, a_3 \in k$ are general. Therefore, S admits an ordinary singularity of multiplicity d-1 at the generic point of (the line) op_0 and is smooth at the generic point of op_i for $1 \le i \le m$. If S' is another general member of that linear system, then there exists an irreducible rational curve Γ of degree $e = \deg(T_{g,\tau}^{-1})$ such that the intersection scheme $S \cap S'$ is supported on:

$$\Gamma \cup \left(\bigcup_{i=0}^m op_i\right).$$

We have:

$$\operatorname{mult}_{\Gamma}(S, S') = 1, \quad \operatorname{mult}_{op_0}(S, S') = (d-1)^2, \quad \operatorname{mult}_{op_i}(S, S') = 1, \quad i = 1, \dots, m,$$

hence $e = d^2 - (d-1)^2 - m = 2d - 1 - m$, which proves assertion (a).

To prove (b), we proceed analogously. This time we choose g = wA + B with:

$$A = \sum_{i=\ell}^{d-1} x^{d-1-i} A_i(y, z), \qquad B = \sum_{j=\ell}^d x^{d-j} B_j(y, z),$$

where $A_i, B_i \in k[y, z]$ are general homogeneous polynomials of degree *i*. Since $\ell \leq d - 2$, there exist points $p_1, \ldots, p_{2d-2} \in \mathbb{P}^2$ such that $A(p_i) = B(p_i) = 0$ for $1 \leq i \leq m$ and $A(p_j) \neq 0$, $B(p_j) = 0$ for $j = m + 1, \ldots, 2d - 2$: indeed, in the open set $\mathbb{P}^2 - \{p_0\}$, curves A = 0 and B = 0 intersect at $d(d-1) - \ell^2 \geq d(d-1) - (d-2)^2 = 3d - 4$ points. Thus we can define τ as before and obtain assertion (b). \Box

Theorem 3. There exist Cremona transformations of bidegree (d, e) for $d \le e \le d^2$.

Proof. From the part (a) of Lemma 2 we deduce that there exist Cremona transformations of bidegrees (d, e) for $d \le e \le 2d - 1$.

Now we use the part (b) of Lemma 2. Suppose $\ell < d - 1$ and think of $e = d^2 - \ell^2 - m$ as a function $e(\ell, m)$ depending on ℓ , m; to complete the proof it suffices to show that the image of that function contains $\{2d, 2d + 1, \dots, d^2\}$.

We note that e(d-2, 2d-2) = 2d-2 and $e(0, 0) = d^2$; in other words, the part (b) of Lemma 2 implies that there exist Cremona transformations of bidegrees (d, 2d-2) and (d, d^2) . On the other hand $e(\ell, 0) - e(\ell - 1, 2d - 2) = 2(d - \ell) - 1 > 0$. Since $e(\ell, m)$ decreases with respect to m, we easily obtain the result. \Box

For d = 2, the theorem above asserts that there exist Cremona transformations of bidegrees (2, 2), (2, 3), (2, 4); analogously for d = 3 and bidegrees (3, 3), (3, 4), ..., (3, 9), and so on. By symmetry, we deduce:

Corollary 4. There exist Cremona transformations of bidegrees (d, e) with $\sqrt{d} \le e \le d^2$.

Remark 5. The inequality $\sqrt{d} \le e \le d^2$ is the unique obstruction to the degree for the inverse of a Cremona transformation of degree *d* in \mathbb{P}^3 .

Acknowledgement

We would like to thank Igor Dolgachev for pointing out a mistake in [4, Example 2.1].

References

- [1] M. Alberich-Carramiñana, Geometry of the Plan Cremona Maps, Lect. Notes Math., vol. 1769, Springer, 2000.
- [2] E. de Jonquières, Mèmoire sur les figures isographiques et sur un mode uniforme de génération des courbes à courbure d'un ordre quelconque au moyen de deux faisceaux correspondants de droites, Nouv. Ann. Math., 2^e série 3 (1864) 97–111.
- [3] I. Pan, Les transformations de Cremona stellaires, Proc. Amer. Math. Soc. 129 (5) (2000) 1257–1262.
- [4] I. Pan, Sur les multidegrés des transformations de Cremona, C. R. Acad. Sci. Paris, Ser. I 330 (2000) 297-300.