Algebraic Geometry

On Cremona transformations of \mathbb{P}^{3} with all possible bidegrees

Sur les transformations de Cremona de \mathbb{P}^{3} de tous les degrés possibles

Ivan Pan ${ }^{1}$
Centro de Matemática, Facultad de Ciencias, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay

A R T I C L E IN F O

Article history:

Received 7 April 2013
Accepted after revision 20 June 2013
Available online 23 July 2013
Presented by Jean-Pierre Serre

Abstract

For every orderer pair (d, e) of integer numbers $d, e \geqslant 2$, such that $\sqrt{d} \leqslant e \leqslant d$, we construct a birational map $\mathbb{P}^{3}-->\mathbb{P}^{3}$ defined by homogeneous polynomials of degree d whose inverse map is defined by homogeneous polynomials of degree e. © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved. R É S U M É

Pour chaque paire ordonnée (d, e) d'entiers satisfaisant $d, e \geqslant 2$ et $\sqrt{d} \leqslant e \leqslant d$, nous construisons une application birationnelle $\mathbb{P}^{3}-->\mathbb{P}^{3}$ définie par des formes de degrés d, dont l'application inverse est définie par des formes de degré e.
© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

1. Introduction

The aim of this note is to correct a mistake in the proof of theorem [4, Théorème 2.2]. The proof of that theorem depends on the example [4, Exemple 2.1] which is wrong.

We propose an explicit construction of Cremona transformations of \mathbb{P}^{3} (see Section 2, especially Lemma 2) that, together with their inverse maps, provide all possible bidegrees (Theorem 3 and Corollary 4).

2. Main construction and results

Let \mathbb{P}^{3} be the projective space over an algebraically closed field k of characteristic zero; we fix homogeneous coordinates w, x, y, z on \mathbb{P}^{3}.

We recall that a Cremona transformation of \mathbb{P}^{3} is a birational map $F: \mathbb{P}^{3}-->\mathbb{P}^{3}$. We say F has bidegree (d,e) when F and its inverse F^{-1} are defined by homogeneous polynomials, without non-trivial common factors, of degrees d and e respectively; notice that in this case F^{-1} has bidegree (e, d). If $V \subset \mathbb{P}^{3}$ is a dense open set over which F^{-1} is defined and injective and $L \subset \mathbb{P}^{3}$ is a line with $L \cap V \neq \emptyset$, then e is the degree of the closure of $F^{-1}(L \cap V)$; one deduces that $\sqrt{d} \leqslant e \leqslant d$ (see for example $[4, \S 1]$).

If $X \subset \mathbb{P}^{2}$ is a curve and $p \in \mathbb{P}^{2}$ we denote by $\operatorname{mult}_{p}(X)$ the multiplicity of X at p. If $S, S^{\prime} \subset \mathbb{P}^{3}$ are surfaces and $C \subset S \cap S^{\prime}$ is an irreducible component, we denote by mult $C\left(S, S^{\prime}\right)$ the intersection multiplicity of S and S^{\prime} along C.

Consider a rational map $T: \mathbb{P}^{3}-->\mathbb{P}^{3}$ defined by:

[^0]$$
T=\left(g: q t_{1}: q t_{2}: q t_{3}\right)
$$
where $t_{1}, t_{2}, t_{3} \in k[x, y, z]$ are homogeneous of degree r, without non-trivial common factors, and $g, q \in k[w, x, y, z]$ are homogeneous of degrees $d, d-1$, with $d \geqslant r \geqslant 1$ and g irreducible. We know that T is birational if $\tau:=\left(t_{1}: t_{2}\right.$: $\left.t_{3}\right): \mathbb{P}^{2}-->\mathbb{P}^{2}$ is birational and g, q vanish at $o=(1: 0: 0: 0)$ with orders $d-1$ and $\geqslant d-r-1$, respectively (see [3, Proposition 2.2]).

On the other hand, consider $2 r-1$ points $p_{0}, p_{1}, \ldots, p_{2 r-2}$ in $\mathbb{P}^{2}, r \geqslant 2$, satisfying the following condition:
There exist curves $X_{r}, Y_{r-1} \subset \mathbb{P}^{2}$ of degrees $r, r-1$, respectively, with X_{r} irreducible, such that mult $p_{p_{0}}\left(X_{r}\right)=r-1$, $\operatorname{mult}_{p_{0}}\left(Y_{r-1}\right) \geqslant r-2$ and $p_{i} \in X_{r} \cap Y_{r-1}$ for $i=1, \ldots, 2 r-2$.

Hence [3] also implies that there exists a plane Cremona transformation defined by polynomials of degree r with a point of multiplicity $r-1$ at p_{0} and passing through $p_{1}, \ldots, p_{2 r-2}$ with multiplicity 1 : indeed, if we consider $p_{0}=(1: 0: 0)$ and take polynomials t_{1} and f, of degrees r and $r-1$, defining X_{r} and Y_{r-1} respectively, then $\left(t_{1}: y f: z f\right): \mathbb{P}^{2}-->\mathbb{P}^{2}$ is a Cremona transformation as required; such a transformation is said to be associated with the points $p_{0}, p_{1}, \ldots, p_{2 r-2}$.

Remark 1. The transformations satisfying condition (I) are general cases of the so-called de Jonquières transformations (see [2] or [1, Definition 2.6.10]). We note that the Enriques criterion [1, Theorem 5.1.1] may be used to prove that a set of $2 r-2$ points $p_{0}, p_{1}, \ldots, p_{2 r-2}$ with assigned multiplicities $r-1,1, \ldots, 1$, and satisfying condition (I) defines a de Jonquières transformation.

Set $r=d$ and take an irreducible homogeneous polynomial $g=w A(x, y, z)+B(x, y, z)$ of degree d; that is, $q \in k-\{0\}$ in the considerations above. Denote by $T_{g, \tau}$ the Cremona transformation defined by:

$$
\begin{equation*}
T_{g, \tau}=\left(g: t_{1}: t_{2}: t_{3}\right) \tag{1}
\end{equation*}
$$

where $\tau=\left(t_{1}: t_{2}: t_{3}\right)$ is associated to $2 d-1$ points satisfying condition (I).
We have:
Lemma 2. Let $d \geqslant 2$ be an integer number. Then:
(a) there exist g and τ such that $T_{g, \tau}$ has bidegree $(d, 2 d-1-m)$, for $0 \leqslant m \leqslant d-1$;
(b) there exist g and τ such that $T_{g, \tau}$ has bidegree $\left(d, d^{2}-\ell^{2}-m\right)$, for $0 \leqslant \ell<d-1$ and $0 \leqslant m \leqslant 2 d-2$.

Proof. We identify \mathbb{P}^{2} with the plane $\{w=0\} \subset \mathbb{P}^{3}$ and consider a point $p_{0} \in \mathbb{P}^{2}$. Without loss of generality, we may suppose that $p_{0}=(0: 1: 0: 0)$. We recall $o=(1: 0: 0: 0)$.

In order to prove (a) we first choose $g \in k[w, x, y, z]$ to be a homogeneous polynomial that vanishes along the line $o p_{0}$ with order $d-1$ and is general with respect to this condition. In other words, one has $g=w A+B$ with:

$$
A=A_{d-1}(y, z), \quad B=x B_{d-1}(y, z)+B_{d}(y, z)
$$

where $A_{i}, B_{i} \in k[y, z]$ are general homogeneous polynomials of degree i. Hence $A=0$ defines a union of $d-1$ distinct lines in \mathbb{P}^{2} passing through p_{0} and $B=0$ defines an irreducible curve of degree d with an ordinary singular point of multiplicity $d-1$ at p_{0}.

Notice that, by construction, in the open set $\mathbb{P}^{2}-\left\{p_{0}\right\}$, curves $A=0$ and $B=0$ intersect at $d(d-1)-(d-1)^{2}=d-1$ points; in particular, if $m \leqslant d-1$, there exist m points $p_{1}, \ldots, p_{m} \in \mathbb{P}^{2}$ satisfying $A\left(p_{i}\right)=B\left(p_{i}\right)=0$ for $1 \leqslant i \leqslant m$. We consider m such points and choose $2 d-1-m$ points $p_{m+1}, \ldots, p_{2 d-2} \in \mathbb{P}^{2}$ with $A\left(p_{j}\right) \neq 0$ and $B\left(p_{j}\right)=0$, for all $j=$ $m+1, \ldots, 2 d-2$, such that $p_{0}, p_{1}, \ldots, p_{2 d-2}$ satisfy (I). Let τ be a plane Cremona transformation associated with these $2 d-1$ points.

Now we consider a Cremona transformation $T_{g, \tau}: \mathbb{P}^{3}-->\mathbb{P}^{3}$ as in (1). A general member in the linear system defining $T_{g, \tau}$ is an irreducible surface of degree d, S say, with an equation of the form:

$$
a g+a_{1} t_{1}+a_{2} t_{2}+a_{3} t_{3}=0
$$

where $a, a_{1}, a_{2}, a_{3} \in k$ are general. Therefore, S admits an ordinary singularity of multiplicity $d-1$ at the generic point of (the line) $o p_{0}$ and is smooth at the generic point of $o p_{i}$ for $1 \leqslant i \leqslant m$. If S^{\prime} is another general member of that linear system, then there exists an irreducible rational curve Γ of degree $e=\operatorname{deg}\left(T_{g}^{-1}\right)$ such that the intersection scheme $S \cap S^{\prime}$ is supported on:

$$
\Gamma \cup\left(\bigcup_{i=0}^{m} o p_{i}\right)
$$

We have:

$$
\operatorname{mult}_{\Gamma}\left(S, S^{\prime}\right)=1, \quad \operatorname{mult}_{o p_{0}}\left(S, S^{\prime}\right)=(d-1)^{2}, \quad \operatorname{mult}_{o p_{i}}\left(S, S^{\prime}\right)=1, \quad i=1, \ldots, m
$$

hence $e=d^{2}-(d-1)^{2}-m=2 d-1-m$, which proves assertion (a).
To prove (b), we proceed analogously. This time we choose $g=w A+B$ with:

$$
A=\sum_{i=\ell}^{d-1} x^{d-1-i} A_{i}(y, z), \quad B=\sum_{j=\ell}^{d} x^{d-j} B_{j}(y, z)
$$

where $A_{i}, B_{i} \in k[y, z]$ are general homogeneous polynomials of degree i. Since $\ell \leqslant d-2$, there exist points $p_{1}, \ldots, p_{2 d-2} \in$ \mathbb{P}^{2} such that $A\left(p_{i}\right)=B\left(p_{i}\right)=0$ for $1 \leqslant i \leqslant m$ and $A\left(p_{j}\right) \neq 0, B\left(p_{j}\right)=0$ for $j=m+1, \ldots, 2 d-2$: indeed, in the open set $\mathbb{P}^{2}-\left\{p_{0}\right\}$, curves $A=0$ and $B=0$ intersect at $d(d-1)-\ell^{2} \geqslant d(d-1)-(d-2)^{2}=3 d-4$ points. Thus we can define τ as before and obtain assertion (b).

Theorem 3. There exist Cremona transformations of bidegree (d, e) for $d \leqslant e \leqslant d^{2}$.
Proof. From the part (a) of Lemma 2 we deduce that there exist Cremona transformations of bidegrees (d, e) for $d \leqslant e \leqslant$ $2 d-1$.

Now we use the part (b) of Lemma 2. Suppose $\ell<d-1$ and think of $e=d^{2}-\ell^{2}-m$ as a function $e(\ell, m)$ depending on ℓ, m; to complete the proof it suffices to show that the image of that function contains $\left\{2 d, 2 d+1, \ldots, d^{2}\right\}$.

We note that $e(d-2,2 d-2)=2 d-2$ and $e(0,0)=d^{2}$; in other words, the part (b) of Lemma 2 implies that there exist Cremona transformations of bidegrees $(d, 2 d-2)$ and $\left(d, d^{2}\right)$. On the other hand $e(\ell, 0)-e(\ell-1,2 d-2)=2(d-\ell)-1>0$. Since $e(\ell, m)$ decreases with respect to m, we easily obtain the result.

For $d=2$, the theorem above asserts that there exist Cremona transformations of bidegrees $(2,2),(2,3),(2,4)$; analogously for $d=3$ and bidegrees $(3,3),(3,4), \ldots,(3,9)$, and so on. By symmetry, we deduce:

Corollary 4. There exist Cremona transformations of bidegrees (d, e) with $\sqrt{d} \leqslant e \leqslant d^{2}$.
Remark 5. The inequality $\sqrt{d} \leqslant e \leqslant d^{2}$ is the unique obstruction to the degree for the inverse of a Cremona transformation of degree d in \mathbb{P}^{3}.

Acknowledgement

We would like to thank Igor Dolgachev for pointing out a mistake in [4, Example 2.1].

References

[1] M. Alberich-Carramiñana, Geometry of the Plan Cremona Maps, Lect. Notes Math., vol. 1769, Springer, 2000.
[2] E. de Jonquières, Mèmoire sur les figures isographiques et sur un mode uniforme de génération des courbes à courbure d'un ordre quelconque au moyen de deux faisceaux correspondants de droites, Nouv. Ann. Math., 2^{e} série 3 (1864) 97-111.
[3] I. Pan, Les transformations de Cremona stellaires, Proc. Amer. Math. Soc. 129 (5) (2000) 1257-1262.
[4] I. Pan, Sur les multidegrés des transformations de Cremona, C. R. Acad. Sci. Paris, Ser. I 330 (2000) 297-300.

[^0]: E-mail address: ivan@cmat.edu.uy.
 1 Partially supported by the Agencia Nacional de Investigadores of Uruguay.
 1631-073X/\$ - see front matter © 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.
 http://dx.doi.org/10.1016/j.crma.2013.06.003

