Mathematical Analysis

A Beurling type theorem in weighted Bergman spaces

Un théorème de type Beurling dans des espaces de Bergman pondérés

Joseph A. Ball ${ }^{\text {a }}$, Vladimir Bolotnikov ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Virginia Tech, Blacksburg, VA 24061-0123, USA
${ }^{\text {b }}$ Department of Mathematics, College of William and Mary, Williamsburg, VA 23187-8795, USA

A R T I C L E I N F O

Article history:

Received 25 March 2013
Accepted after revision 19 June 2013
Available online 9 July 2013
Presented by Gilles Pisier

Abstract

For the vector-valued Hardy space $H^{2}(\mathcal{U})$ and the standard weighted Bergman space $\mathcal{A}_{n}(\mathcal{Y})$ with coefficient Hilbert spaces \mathcal{U} and \mathcal{Y}, we single out a class of contractive multipliers from $H^{2}(\mathcal{U})$ to $\mathcal{A}_{n}(\mathcal{Y})$ which we call partially isometric multipliers. We then show that a closed subspace $\mathcal{M} \subset \mathcal{A}_{n}(\mathcal{Y})$ is invariant under the shift operator $S_{n}: f(z) \mapsto$ $z f(z)$ if and only if $\mathcal{M}=\Phi \cdot H^{2}(\mathcal{U})$ for some partially isometric multiplier Φ from $H^{2}(\mathcal{U})$ to $\mathcal{A}_{n}(\mathcal{Y})$.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

R É S U M É

Soit $H^{2}(\mathcal{U})$ l'espace de Hardy aux valeurs vectorielles et soit $\mathcal{A}_{n}(\mathcal{Y})$ l'espace de Bergman aux valeurs vectorielles et au poids $\left(1-|z|^{2}\right)^{n-2}$, où les espaces des coefficients \mathcal{U} et \mathcal{Y} sont des espaces de Hilbert. Nous considérons une classe de multiplicateurs contractifs de $H^{2}(\mathcal{U})$ dans $\mathcal{A}_{n}(\mathcal{Y})$, que nous appelons multiplicateurs isométriques partiels. Nous montrons qu'un sous-espace $\mathcal{M} \subset \mathcal{A}_{n}(\mathcal{Y})$ qui est invariant pour l'operateur $S_{n}: f(z) \mapsto z f(z)$ est inclus isometriquement dans $\mathcal{A}_{n}(\mathcal{Y})$ si et seulement si $\mathcal{M}=\Phi \cdot H^{2}(\mathcal{U})$ pour un multiplicateur isométrique partiel Φ de $H^{2}(\mathcal{U})$ dans $\mathcal{A}_{n}(\mathcal{Y})$.
© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction

For a Hilbert space \mathcal{Y}, let $H^{2}(\mathcal{Y})$ be the standard Hardy space of square-summable \mathcal{Y}-valued functions on the open unit disk \mathbb{D}. The shift operator $S_{1}: f(z) \rightarrow z f(z)$ is an isometry on $H^{2}(\mathcal{Y})$ and therefore it possesses the wandering subspace property: any S_{1}-invariant subspace $\mathcal{M} \subset H^{2}(\mathcal{Y})$ is generated by the wandering subspace $\mathcal{E}=\mathcal{M} \ominus S_{1} \mathcal{M}$ and moreover $S_{1}^{k} \mathcal{E} \perp S_{1}^{\ell} \mathcal{E}$ for all nonnegative $k \neq \ell$. Furthermore, any such wandering subspace has the form $\mathcal{E}=\Theta \cdot \mathcal{U}$ for some inner function $\Theta: \mathbb{D} \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{Y})$ and an appropriate coefficient Hilbert space \mathcal{U}, which in turn leads to the representations:

$$
\begin{equation*}
\mathcal{M}=\bigoplus_{k \geqslant 0}\left(S_{1}^{k} \mathcal{M} \ominus S_{1}^{k+1} \mathcal{M}\right)=\bigoplus_{k \geqslant 0} S_{1}^{k} \mathcal{E}=\bigoplus_{k \geqslant 0} S_{1}^{k} \Theta \cdot \mathcal{U}=\Theta \cdot H^{2}(\mathcal{U}) \tag{1}
\end{equation*}
$$

for an S_{1}-invariant subspace $\mathcal{M} \subset H^{2}(\mathcal{Y})$. These representations display the vector-valued version of the classical Beurling theorem [4] based on Halmos' wandering subspace approach [5]. We denote by $\mathcal{L}(\mathcal{U}, \mathcal{Y})$ the space of bounded linear

[^0]Hilbert space operators from \mathcal{U} to \mathcal{Y} and we recall that a function $\Theta: \mathbb{D} \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{Y})$ is inner if the multiplication operator $M_{\Theta}: f(z) \mapsto \Theta(z) \cdot f(z)$ is an isometry from $H^{2}(\mathcal{U})$ to $H^{2}(\mathcal{Y})$.

Beurling type characterizations of shift-invariant subspaces of the Bergman space are due to Aleman, Richter and Sundberg [2]. For an integer $n \geqslant 2$, let $\mathcal{A}_{n}(\mathcal{Y})$ be the space of \mathcal{Y}-valued functions analytic on \mathbb{D} and square-integrable over \mathbb{D} with respect to the weight $\left(1-|z|^{2}\right)^{n-2}$. The space $\mathcal{A}_{n}(\mathcal{Y})$ can be alternatively characterized as:

$$
\begin{equation*}
\mathcal{A}_{n}(\mathcal{Y})=\left\{f(z)=\sum_{j \geqslant 0} f_{j} z^{j}:\|f\|_{\mathcal{A}_{n}(\mathcal{Y})}^{2}:=\sum_{j \geqslant 0} \mu_{n, j} \cdot\left\|f_{j}\right\|_{\mathcal{Y}}^{2}<\infty\right\}, \quad \mu_{n, j}=\frac{j!(n-1)!}{(j+n-1)!}, \tag{2}
\end{equation*}
$$

or just as the reproducing kernel Hilbert space with reproducing kernel $k_{\mathcal{A}_{n}(\mathcal{Y})}(z, \zeta)=(1-z \bar{\zeta})^{-n} I \mathcal{Y}$. If we interpret the binomial coefficient $\mu_{n, j}$ in (2) to have value 1 when $n=1$, the two latter characterizations identify $\mathcal{A}_{1}(\mathcal{Y})$ with the Hardy space $H^{2}(\mathcal{Y})$. We let $S_{n}: f(z) \mapsto z f(z)$ denote the shift operator on $\mathcal{A}_{n}(\mathcal{Y})$, and we recall that a function $\Theta: \mathbb{D} \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{Y})$ is called $\mathcal{A}_{n}(\mathcal{Y})$-inner if $\|\Theta u\|_{\mathcal{A}_{n}(\mathcal{Y})}=\|u\|_{\mathcal{U}}$ for all $u \in \mathcal{U}$ and if $\Theta u \perp S_{n}^{k} \Theta v$ for all $u, v \in \mathcal{U}$ and all integers $k \geqslant 1$; see [2].

As was shown in [2], the Bergman shift S_{2} possesses the wandering subspace property (i.e., any S_{2}-invariant subspace \mathcal{M} has the form $\mathcal{M}=\bigvee_{k \geqslant 0} S_{2}^{k} \mathcal{E}$ where $\mathcal{E}:=\mathcal{M} \ominus S_{2} \mathcal{M}$ and where \bigvee means the closed linear span) and moreover, if \mathcal{M} is an S_{2}-invariant subspace of $\mathcal{A}_{2}(\mathcal{Y})$, then the wandering subspace $\mathcal{E}=\mathcal{M} \ominus S_{2} \mathcal{M}$ has the form $\mathcal{E}=\Theta_{2} \cdot \mathcal{U}$ for some $\mathcal{L}(\mathcal{U}, \mathcal{Y})$-valued $\mathcal{A}_{2}(\mathcal{Y})$-inner function Θ_{2}. Hence,

$$
\begin{equation*}
\mathcal{M}=\bigvee_{k \geqslant 0} S_{2}^{k} \mathcal{E} \quad \text { and } \quad \mathcal{E}:=\mathcal{M} \ominus S_{2} \mathcal{M}=\Theta_{2} \cdot \mathcal{U} \perp S_{2}^{k} \mathcal{E} \quad \text { for all } k \geqslant 1 \tag{3}
\end{equation*}
$$

Representations $\mathcal{M} \ominus S_{n} \mathcal{M}=\Theta_{n} \mathcal{U}$ for wandering subspaces in $\mathcal{A}_{n}(\mathcal{Y})$ hold true for $n \geqslant 2$. It is known that S_{n} possesses the wandering subspace property for $n=3$ (due to Shimorin [9]) but that S_{n} fails to have the wandering subspace property for $n \geqslant 4$ (see [6]).

Another representation for S_{n}-invariant subspaces $\mathcal{M} \subset \mathcal{A}_{n}(\mathcal{Y})$ is based on the observation that for any such \mathcal{M}, the subspace $S_{n}^{k} \mathcal{M} \ominus S_{n}^{k+1} \mathcal{M}$ can be always represented as $S_{n}^{k} \Theta_{n, k} \mathcal{U}_{k}$ for an appropriate Hilbert spaces \mathcal{U}_{k} and an $\mathcal{A}_{n}(\mathcal{Y})$-inner function $z^{k} \Theta_{n, k}(z)$. This observation leads to the orthogonal representation:

$$
\begin{equation*}
\mathcal{M}=\bigoplus_{k \geqslant 0}\left(S_{n}^{k} \mathcal{M} \ominus S_{n}^{k+1} \mathcal{M}\right)=\bigoplus_{k \geqslant 0} S_{n}^{k} \Theta_{n, k} \mathcal{U}_{k} \tag{4}
\end{equation*}
$$

of \mathcal{M} in terms of a Bergman-inner family $\left\{\Theta_{n, k}\right\}_{k} \geqslant 0$. We refer to [3] for precise definitions and proofs only noting here that if $n=1$, then $\Theta_{n, k}$ and \mathcal{U}_{k} do not depend on k and representation (4) amounts to (1). So, both representations (3) and (4) originate to the Halmos wandering subspace representation (1).

In this note, we present another representation for S_{n}-invariant subspaces of $\mathcal{A}_{n}(\mathcal{Y})$ which can be traced to the de Branges-Rovnyak approach to the Beurling theorem in the classical Hardy space case.

2. Partially isometric multipliers and the main result

A function $\Phi: \mathbb{D} \rightarrow \mathcal{L}(\mathcal{U}, \mathcal{Y})$ is called a contractive multiplier from $H^{2}(\mathcal{U})$ to $\mathcal{A}_{n}(\mathcal{Y})$, denoted as $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$, if the multiplication operator $M_{\Phi}: f \rightarrow \Phi f$ is a contraction from $H^{2}(\mathcal{U})$ to $\mathcal{A}_{n}(\mathcal{Y})$. The latter is equivalent to the kernel:

$$
\begin{equation*}
K_{\Phi}(z, \zeta):=k_{\mathcal{A}_{n}(\mathcal{Y})}(z, \zeta)-\Phi(z) k_{H^{2}(\mathcal{U})}(z, \zeta) \Phi(\zeta)^{*}=\frac{I \mathcal{Y}}{(1-z \bar{\zeta})^{n}}-\frac{\Phi(z) \Phi(\zeta)^{*}}{1-z \bar{\zeta}} \tag{5}
\end{equation*}
$$

being positive on $\mathbb{D} \times \mathbb{D}$. With any $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ we therefore can associate the reproducing kernel Hilbert space $\mathcal{H}\left(K_{\Phi}\right)$ with reproducing kernel K_{Φ}. It is readily seen from (5) that $\mathcal{H}\left(K_{\Phi}\right)$ is contractively included in $\mathcal{A}_{n}(\mathcal{Y})$ for any $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$. Recall that any $\mathcal{L}(\mathcal{U}, \mathcal{Y})$-valued $\mathcal{A}_{n}(\mathcal{Y})$-inner function is in $\mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ (see [8,9]). In fact, it can be shown that a contractive multiplier $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ is $\mathcal{A}_{n}(\mathcal{Y})$-inner if and only if $\|\Theta u\|_{\mathcal{A}_{n}(\mathcal{Y})}=\|u\|_{\mathcal{U}}$ for all $u \in \mathcal{U}$. We now introduce another subclass of $\mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$.

Definition 2.1. A contractive multiplier $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ will be called a partially isometric (p.i.) multiplier if the associated space $\mathcal{H}\left(K_{\Phi}\right)$ is isometrically included into $\mathcal{A}_{n}(\mathcal{Y})$, or equivalently (upon passing to orthogonal complements in $\mathcal{A}_{n}(\mathcal{Y})$), if M_{Φ} is a partial isometry from $H^{2}(\mathcal{U})$ into $\mathcal{A}_{n}(\mathcal{Y})$.

The next theorem characterizes closed S_{n}-invariant subspace of $\mathcal{A}_{n}(\mathcal{Y})$ in terms of p.i. multipliers.

Theorem 2.2. Let n be an integer with $n \geqslant 2$. Then \mathcal{M} is a closed S_{n}-invariant subspace of $\mathcal{A}_{n}(\mathcal{Y})$ if and only if there is a Hilbert space \mathcal{U} and a p.i. multiplier $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ such that $\mathcal{M}=\Phi \cdot H^{2}(\mathcal{U})$.

Proof. The "if" part is straightforward: if $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ is a p.i. multiplier, then the range space $\operatorname{Ran} M_{\Phi}=\Phi \cdot H^{2}(\mathcal{U})$ is a closed subspace of $\mathcal{A}_{n}(\mathcal{Y})$ (by Definition 2.1); therefore, and since $H^{2}(\mathcal{U})$ is S_{1}-invariant, the space Ran M_{Φ} is S_{n}-invariant, we now sketch the proof of the "only if" part.

Recall that an operator $A \in \mathcal{L}(X)$ is strongly stable if A^{k} converges to zero in the strong operator topology. If \mathcal{M} is a closed S_{n}-invariant subspace of $\mathcal{A}_{n}(\mathcal{Y})$, then its orthogonal complement $\mathcal{M}^{\perp}=\mathcal{A}_{n}(\mathcal{Y}) \ominus \mathcal{M}$ is a closed S_{n}^{*}-invariant subspace of $\mathcal{A}_{n}(\mathcal{Y})$. Then there exists a Hilbert space \mathcal{X}, a strongly stable contraction A on \mathcal{X} (in fact, an n-hypercontraction; see [1] for the definition) and an operator $C \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ such that:

$$
\begin{equation*}
C^{*} C=\sum_{j=0}^{n}(-1)^{j}\binom{n}{j} A^{* j} A^{j} \tag{6}
\end{equation*}
$$

and so that \mathcal{M}^{\perp} has the representation $\mathcal{M}^{\perp}=\left\{C(I-z A)^{-n} x: x \in \mathcal{X}\right\}$. One such choice is $\mathcal{X}=\mathcal{M}^{\perp}$ with $C: f \mapsto f(0)$ and $A=\left.S_{n}^{*}\right|_{\mathcal{M}^{\perp}}$; see [3, Theorem 5.3]. Furthermore, \mathcal{M}^{\perp} can be identified as a reproducing kernel Hilbert space with reproducing kernel $K_{\mathcal{M}^{\perp}}(z, \zeta)=C(I-z A)^{-n}\left(I-\bar{\zeta} A^{*}\right)^{-n} C^{*}$. Therefore, the reproducing kernel for $\mathcal{M}=\left(\mathcal{M}^{\perp}\right)^{\perp}$ is given by:

$$
K_{\mathcal{M}}(z, \zeta)=k_{\mathcal{A}_{n}(\mathcal{Y})}(z, \zeta)-K_{\mathcal{M}^{\perp}}(z, \zeta)=(1-z \bar{\zeta})^{-n} I \mathcal{Y}-C(I-z A)^{-n}\left(I-\bar{\zeta} A^{*}\right)^{-n} C^{*}
$$

By [3, Proposition 4.7], for a strongly stable contraction $A \in \mathcal{L}(\mathcal{X})$ and $C \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ subject to equality (6), the following series converges in the strong operator topology to the identity operator:

$$
\begin{equation*}
\sum_{j=0}^{\infty} \mu_{n, j}^{-1} A^{* j} C^{*} C A^{j}=I_{\mathcal{X}} \tag{7}
\end{equation*}
$$

We next introduce the operators $\mathcal{O}_{C, A}: \mathcal{X} \rightarrow \ell^{2}(\mathcal{Y})$ and $D: \mathcal{U} \rightarrow \ell^{2}(\mathcal{Y})$ of the form:

$$
\mathcal{O}_{C, A}=\left[\begin{array}{c}
\mu_{n-1,0}^{-\frac{1}{2}} C \tag{8}\\
\mu_{n-1,1}^{-\frac{1}{2}} C A \\
\mu_{n-1,2}^{-\frac{1}{2}} C A^{2} \\
\vdots
\end{array}\right], \quad D=\left[\begin{array}{c}
D_{0} \\
D_{1} \\
D_{2} \\
\vdots
\end{array}\right]
$$

where $\mu_{n-1, j}$ are the binomial weights defined as in (2). The first operator is completely determined from the pair (C, A) and is a contraction since by (7) and the binomial identity $\mu_{n-1, j}^{-1}+\mu_{n, j-1}^{-1}=\mu_{n, j}^{-1}$,

$$
\mathcal{O}_{C, A}^{*} \mathcal{O}_{C, A}+A^{*} A=\sum_{j=0}^{\infty} \mu_{n-1, j}^{-1} A^{* j} C^{*} C A^{j}+\sum_{j=0}^{\infty} \mu_{n, j}^{-1} A^{* j+!} C^{*} C A^{j+1}=\sum_{j=0}^{\infty} \mu_{n, j}^{-1} A^{* j} C^{*} C A^{j}=I_{\mathcal{X}}
$$

The second operator in (8) will be chosen along with another operator $B \in \mathcal{L}(\mathcal{U}, \mathcal{X})$ to solve the Cholesky factorization problem:

$$
\left[\begin{array}{l}
B \tag{9}\\
D
\end{array}\right]\left[\begin{array}{ll}
B^{*} & D^{*}
\end{array}\right]=\left[\begin{array}{cc}
I_{\mathcal{X}} & 0 \\
0 & I_{\ell^{2}(\mathcal{Y})}
\end{array}\right]-\left[\begin{array}{c}
A \\
\mathcal{O}_{C, A}
\end{array}\right]\left[\begin{array}{ll}
A^{*} & \mathcal{O}_{C, A}^{*}
\end{array}\right]
$$

With all these operators in hand we define the function $\Phi(z)=\sum_{j=0}^{\infty} \mu_{n-1, j}^{-\frac{1}{2}} D_{j} z^{j}+z C(I-z A)^{-n} B$, and a calculation based on (9) shows that Φ satisfies the identity:

$$
\begin{equation*}
\frac{\Phi(z) \Phi(\zeta)^{*}}{1-z \bar{\zeta}}=(1-z \bar{\zeta})^{-n} I \mathcal{Y}-C(I-z A)^{-n}\left(I-\bar{\zeta} A^{*}\right)^{-n} C^{*}=K_{\mathcal{M}}(z, \zeta) \tag{10}
\end{equation*}
$$

from which the representation $\mathcal{M}=\Phi \cdot H^{2}(\mathcal{U})$ follows along with the fact that Φ is a p.i. multiplier.
Remark 2.3. Note that Theorem 2.2 follows from the factorization (10) of $K_{\mathcal{M}}(z, \zeta)$; such a factorization appears in a more implicit form in [3].

Remark 2.4. By using the same arguments as in [7, Theorem 10], one can show that the p.i. multiplier representing an S_{n}-invariant subspace \mathcal{M} is essentially unique: if $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ and $\widetilde{\Phi} \in \mathcal{S}_{n}(\widetilde{\mathcal{U}}, \mathcal{Y})$ are two partially isometric multipliers such that $\Phi \cdot H^{2}(\mathcal{U})=\widetilde{\Phi} \cdot H^{2}(\widetilde{\mathcal{U}})$, then there exists a partial isometry $V: \widetilde{\mathcal{U}} \rightarrow \mathcal{U}$ such that $\Phi(z)=\widetilde{\Phi}(z) V$.

Remark 2.5. If $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ is a p.i. multiplier, then the space $\mathcal{H}\left(K_{\Phi}\right)$ with reproducing kernel (5) is isometrically equal to $\left(\Phi \cdot H^{2}(\mathcal{U})\right)^{\perp}$ and hence is invariant under the backward shift S_{n}^{*}. In contrast to the classical case $n=1$, this backward-shift invariance property fails for general contractive multipliers. For example, the function $\Phi(z) \equiv 1$ belongs to $\mathcal{S}_{2}(\mathbb{C}, \mathbb{C})$ and the corresponding kernel (5) equals $\frac{z \bar{\zeta}}{(1-z \bar{\zeta})^{2}}$. Therefore any function in the space $\mathcal{H}\left(K_{\Phi}\right)$ vanishes at the origin and hence $\mathcal{H}\left(K_{\Phi}\right)$ is not S_{n}^{*}-invariant. An open question is to characterize those contractive multipliers $\Phi \in \mathcal{S}_{n}(\mathcal{U}, \mathcal{Y})$ for which the associated space $\mathcal{H}\left(K_{\Phi}\right)$ is invariant under S_{n}^{*}.

References

[1] J. Agler, Hypercontractions and subnormality, J. Oper. Theory 13 (2) (1985) 203-217.
[2] A. Aleman, S. Richter, C. Sundberg, Beurling's theorem for the Bergman space, Acta Math. 177 (1996) 275-310.
[3] J.A. Ball, V. Bolotnikov, Weighted Bergman spaces: shift-invariant subspaces and input/state/output linear systems, Integral Equ. Oper. Theory 76 (3) (2013) 301-356.
[4] A. Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949) 239-255.
[5] P.R. Halmos, Shifts on Hilbert spaces, J. Reine Angew. Math. 208 (1961) 102-112.
[6] H. Hedenmalm, Y.G. Perdomo, Mean value surfaces with prescribed curvature form, J. Math. Pures Appl. 83 (2004) 1075-1107.
[7] S. McCullough, T.T. Trent, Invariant subspaces and Nevanlinna-Pick kernels, J. Funct. Anal. 178 (2000) 226-249.
[8] A. Olofsson, A characteristic operator function for the class of n-hypercontractions, J. Funct. Anal. 236 (2006) 517-545.
[9] S. Shimorin, On Beurling-type theorems in weighted ℓ^{2} and Bergman spaces, Proc. Amer. Math. Soc. 131 (6) (2003) 1777-1787.

[^0]: E-mail addresses: joball@math.vt.edu (J.A. Ball), vladi@math.wm.edu (V. Bolotnikov).
 1631-073X/\$ - see front matter © 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.
 http://dx.doi.org/10.1016/j.crma.2013.06.004

