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We prove the strict unimodality of the q-binomial coefficients
(n

k

)
q as polynomials in q. The

proof is based on the combinatorics of certain Young tableaux and the semigroup property
of Kronecker coefficients of Sn representations.
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r é s u m é

Nous prouvons l’unimodalité stricte des coefficients q-binomiaux
(n

k

)
q comme polynômes

en q. La preuve est basée sur la combinatoire de certains tableaux de Young et la propriété
du semi-groupe des coefficients de Kronecker des représentations de Sn .

© 2013 Académie des sciences. Published by Elsevier Masson SAS. All rights reserved.

0. Introduction

A sequence (a1,a2, . . . ,an) is called unimodal if, for some k, we have:

a1 � a2 � · · ·� ak � ak+1 � · · ·� an.

The q-binomial (Gaussian) coefficients are defined as:

(
m + �

m

)
q
= (qm+1 − 1) · · · (qm+� − 1)

(q − 1) · · · (q� − 1)
=

�m∑
n=0

pn(�,m)qn.

Sylvester’s theorem establishes the unimodality of the sequence:

p0(�,m), p1(�,m), . . . , p�m(�,m).

This celebrated result was first conjectured by Cayley in 1856, and proved by Sylvester using Invariant Theory, in a pioneer-
ing 1878 paper [17]. In the past decades, a number of new proofs and generalizations were discovered both by algebraic
and combinatorial tools, see Section 3. In the previous paper [12], we found a new proof of Sylvester’s theorem using com-
binatorics of Kronecker and Littlewood–Richardson coefficients. Here we use the recently established semigroup property of
Kronecker coefficients to prove the strict unimodality of q-binomial coefficients:
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Theorem 1. For all �,m � 7, we have the following strict inequalities:

(◦) p1(�,m) < · · · < p��m/2�(�,m) = p��m/2�(�,m) > · · · > p�m−1(�,m).

These and the remaining cases are covered in Theorem 6. Note that neither combinatorial nor algebraic tools imply (◦)

directly, as Sylvester’s theorem is notoriously hard to prove and extend. Earlier, in [12], we proved the strict unimodality of
the diagonal coefficients

(2m
m

)
q by combining technical algebraic tools from [13] and Almkvist’s analytic unimodality results.

The following result lies in the heart of the proof of the theorem.

Lemma 2 (Additivity lemma). Suppose inequalities (◦) as in the theorem hold for pairs (�,m1) and (�,m2). Then (◦) holds for
(�,m1 + m2).

Although stated combinatorially, the only proof we know is algebraic. We first establish the lemma and then combine it
with computational results to derive the theorem. We conclude with historical remarks, brief overview of the literature and
open problems.

1. Kronecker coefficients

We adopt the standard notation in combinatorics of partitions and representation theory of Sn (see e.g. [8,16]). We use
g(λ,μ,ν) to denote the Kronecker coefficients:

χλ ⊗ χμ =
∑
ν�n

g(λ,μ,ν)χν, where λ,μ � n.

The following technical result was never stated before, but is implicit in [12] (see also [18, §4]).

Lemma 3. Let n = �m, τk = (n − k,k), where 0 � k � n/2 and set p−1(�,m) = 0. Then:

g
(
m�,m�, τk

) = pk(�,m) − pk−1(�,m).

Proof. Let λ � n, π � k and θ � n −k, and let “∗” denote the Kronecker product of symmetric functions. Littlewood’s formula
states that:

sλ ∗ (sπ sθ ) =
∑

α�k,β�n−k

cλ
αβ(sα ∗ sπ )(sβ ∗ sθ ),

where cλ
μν denote the Littlewood–Richardson coefficients. Clearly, sν ∗ sa = sν , for all ν � a. We obtain:

sλ ∗ (sksn−k) =
∑

α�k, β�n−k

cλ
αβ sαsβ =

∑
α�k, β�n−k, ν�n

cλ
αβcμ

αβ sμ.

By the Jacobi–Trudi formula, we have:

sτk = s(n−k,k) = sksn−k − sk−1sn−k+1.

This gives:

sλ ∗ sτk = sλ ∗ (sksn−k) − sλ ∗ (sk−1sn−k+1) =
∑
μ�n

ak(λ,μ)sμ −
∑
μ�n

ak−1(λ,μ)sμ,

where

ak(λ,μ) =
∑

α�k, β�n−k

cλ
αβcμ

αβ.

Taking the coefficient at sμ in the expansion of sλ ∗ sτk in terms of Schur functions, we get:

(�) g(λ,μ,τk) = ak(λ,μ) − ak−1(λ,μ).

Let λ = μ = (m�). Recall that c(m�)
αβ = 1 if α and β are complementary partitions within the rectangle (m�), and that c(m�)

αβ = 0
otherwise (see e.g. [10]). Therefore,

ak
(
m�,m�

) =
∑

α�k, α⊂(m�)

12 = pk(�,m).

Substituting this into (�) gives the result. �
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Theorem 4 (Semigroup property). Suppose λ,μ,ν,α,β,γ are partitions of n, such that g(λ,μ,ν) > 0 and g(α,β,γ ) > 0. Then
g(λ + α,μ + β,ν + γ ) > 0.

Remark 5. This result was conjectured by Klyachko in 2004, and recently proved in [3]. It is the analogue of the semigroup
property of Littlewood–Richardson coefficients proved by Brion and Knop in 1989 (see [21] for the history and the related
results). Unfortunately, the Knutson–Tao saturation theorem does not generalize to Kronecker coefficients (see, e.g., [5, §2.5]).
Let us mention the following useful extension by Manivel [9]: in the conditions of the theorem, we have:

g(λ + α,μ + β,ν + γ )� max
{

g(λ,μ,ν), g(α,β,γ )
}
.

2. The proofs

Proof of Lemma 2. Let λ = μ = (m�
1), α = β = (m�

2), ν = (�m1 − r, r), γ = (�m2 − s, s). By the strict unimodality assumption
for (�,m1) and (�,m2) and Lemma 3, we have:

g
(
m�

1,m�
1, ν

)
> 0, g

(
m�

2,m�
2, γ

)
> 0,

for all r, s � 0, �= 1. Apply Theorem 4 to the fixed partitions above. Now, for all k = r + s, we then have:

g
(
(m1 + m2)

�, (m1 + m2)
�, τk

) = g
(
m�

1 + m�
2,m�

1 + m�
2, ν + γ

)
> 0,

where n = (m1 + m2)� and τk = (n − k,k) as before. Since such r and s exist for every k �= 1, and m1,m2 > 2, we have the
result. �
Theorem 6. Let m, �� 2. Strict unimodality (◦) as in Theorem 1 holds if and only if � = m = 2 or �,m � 5 except for � = m = 6.

Proof. A direct calculation gives strict unimodality for � = 5, 5 � m � 9. The additivity lemma then implies the cases
� = 5, m � 10, since m = 5a + b for b = 0 or 6 � b � 9. A direct calculation also gives a strict unimodality for 6 � � � 9,
7 � m � 13. The additivity lemma and the symmetry of the q-binomial coefficients under m ↔ �, similarly, imply the cases
�� 10, 7 � m � 13. Applying the additivity lemma in the direction of m to the last cases, we obtain all cases �� 6, m � 14.
Together, these cover all cases �,m � 5, except for (6,6), as desired.

Now, case � = 2 is straightforward, since p2i(2,m) = p2i+1(2,m) for all i < n/4. On the other hand, cases � = 3,4 have
been studied in [6,19] using an explicit symmetric chain decomposition. Since all chain lengths there are � 3, we obtain
equalities for the middle coefficients. �
3. Final remarks

3.1. Let us quote a passage from [17] describing how Sylvester viewed his work:

“I am about to demonstrate a theorem which has been waiting proof for the last quarter of a century and upwards. [. . .]
I accomplished with scarcely an effort a task which I had believed lay outside the range of human power.”

The grandeur notwithstanding, it does reveal Sylvester’s excitement over his discovery.

3.2. Proving unimodality is often difficult and involves a remarkable diversity of applicable tools, ranging from analytic
to bijective, from topological to algebraic, and from Lie theory to probability. We refer to [1,2,15] for a broad overview of
the subject.

3.3. The Additivity lemma gives an example of a 2-dim Klarner system, which always has a finite basis (see [14]).

3.4. The equation (KOH) in [20], based on O’Hara’s combinatorial approach to unimodality of q-binomial coefficients [11],
gives a useful recurrence relation (cf. [4,7]). It would be interesting to see if (KOH) can be used to prove Theorem 1.

3.5. An important generalization of Sylvester’s theorem is the unimodality of sλ(1,q, . . . ,qm) as a polynomial in q, see [8,
p. 137]. We conjecture that if the Durfee square size of λ is large enough, then these coefficients are strictly unimodal. An
analogue of (KOH) in this case is in [4].

3.6. In a different direction, we believe that for every d � 1 there exists L(d), s.t. pk(�,m) − pk−1(�,m) � d for all
L(d) < k � �m/2, and m, � large enough. Unfortunately, the tools in this paper are not directly applicable. However, for
� = m, this follows from Proposition 11 in [15], and further extension of Theorem 5.2 in [12] on the strict unimodality of
the number of partitions into distinct odd parts. Then, combined with Manivel’s extension (see Remark 5), and the finite
basis theorem (see Section 3.3), this would prove the conjecture in a similar manner as the proof of Theorem 6. We plan to
return to this problem in the future.
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