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In this Note, for vector functions defined on unbounded domains of R
3, we consider

continuous embeddings of weighted homogeneous Sobolev spaces into weighted Lebesgue
spaces. Sufficient conditions on power-type weights for the validity of the inequalities are
investigated. Moreover, the related properties of the suitable approximation by smooth
functions with a bounded support can be proved.
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r é s u m é

Dans cette Note, pour des fonctions vectorielles définies sur des domaines non bornés
de R

3, nous considérons des inégalités d’injection d’espaces de Sobolev homogènes avec
poids dans des espaces de Lebesgue avec poids. Des conditions suffisantes pour justifier ces
inégalités sont établies dans le cas de poids de type puissance. En outre, nous vérifions les
propriétés d’approximation par des fonctions indéfiniment différentiables à support borné.

© 2013 Published by Elsevier Masson SAS on behalf of Académie des sciences.

1. Introduction and formulation of the main results

The homogeneous Sobolev spaces of vector functions D1,q
w (Ω) are appropriate for the analysis of systems of partial

differential equations and boundary-value problems in unbounded exterior domains Ω of R
3, like the complementary set

of one or more compact sets Ωc in R
3. The control of a suitable behavior at large distances is required for the solution

vector fields. So a fundamental role in our treatment is played by the choice of admissible radial weights w in the q-class
of Muckenhoupt weights.

We are inspired by Galdi’s presentation of Sobolev classical embedding inequalities (see his book [3], Chapter II, Sec-
tion 5) to provide the weighted embedding inequalities. Another approach by using full Sobolev spaces with radial weights
can be found in the works of Amrouche, Girault and their collaborators (see, e.g., [2]); a generalization of Lemma II.5.2
of [3] in this functional setting is given by Alliot [1], see Proposition 3.8. Let us mention that there are several results
on weighted full Sobolev spaces and embeddings, or even weighted embedding of homogeneous Sobolev spaces but with
different weights (see [7,4,8,10]).

The following conditions (Aα
1 )q and (Aα

2 )q are preparatory and adapted to our analysis:

(
Aα

1

)
q

( r∫
dρ

ρ
2

q−1 w(ρ)
1

q−1

)q−1

�

⎧⎨⎩ c(q, κ) · R−α, for some α > 0, for 1 < q < 3,

c(q, κ), for q = 3,

c(q, κ) · rα, for some α > 0, for q > 3
R
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664 S. Kračmar et al. / C. R. Acad. Sci. Paris, Ser. I 351 (2013) 663–668
(
Aα

2

)
q

{ | · |2−q−α(ln | · |)−q ∈ L1
w(Ω), 1 < q < 3,

| · |2−q+α(ln | · |)−q ∈ L1
w(Ω), q � 3.

The conditions (Aα) we introduce above do not impose serious restriction on radial weights in the q-class of Muckenhoupt
weights. For instance, when the weight is assumed to be a power-type function wκ (|x|) := (1 + |x|)κ for some κ > 0, the
condition (Aα

1 )1<q<3 is always true for α = 3−q+κ
q−1 .

Let us fix some notations: B R(x0) means the x0-centered ball of radius R; we now set Ω R(x0) := Ω \ B R(x0), ΩR(x0) :=
Ω ∩ B R(x0), and ΩR,r(x0) := Ωr(x0) \ ΩR(x0) for a spherical shell. For any x0 ∈ R

3, the value of R > 0 is assumed to be
sufficiently large, more precisely, all used parameters R > 0 will have the following property (AR):

(AR) Ωc ⊂ B R(x0), 0 < δ
(
Ωc) < R.

Parameter R in the condition (Aα
1 )q is assumed to be sufficiently large in this sense.

Our objective is to establish the following results, where we assume concrete radial weights of the form wκ :

Theorem 1 (On a weighted embedding inequality). Let Ω ⊂ R
3 be an exterior domain. Assume that u is given in D1,q

w (Ω), 1 < q < 3,
with the weight w = wκ and κ <

3−q
2q . Let the constant vector u0 be defined in Lemma 1.

Then (u(·) − u0)(| · −x0|−1) ∈ Lq
w(Ω R(x0)) for any x0 ∈ R

3 , R > 0 satisfying the condition (AR). Moreover, there exists K1 =
K1(q,x0) > 0 such that:( ∫

Ω R (x0)

∣∣∣∣u(x) − u0

x − x0

∣∣∣∣q

w
(|x|)dx

)1/q

� K1|u − u0|1,q,Ω R (x0);w . (1)

If Ω is locally Lipschitzian, denoting by s(q) = 3q
3−q the Sobolev exponent, there exists K2 = K2(q) > 0 such that:

‖u − u0‖s(q),Ω;w � K2|u|1,q,Ω;w . (2)

Theorem 2 (Another form of weighted embedding inequality). Let Ω ⊂ R
3 be an exterior domain. Assume that u is given in D1,q

w (Ω)∩
Lq
|∇w|(Ω), 1 < q < 3, with the weight w = wκ and κ <

3−q
q . Let the constant vector u0 be defined in Lemma 1.

Then (u(·) − u0)(| · −x0|−1) ∈ Lq
w(Ω R(x0)) for any x0 ∈ R

3 , R > 0 satisfying the condition (AR). Moreover, there exists K3 =
K3(q,x0) > 0 such that:( ∫

Ω R (x0)

∣∣∣∣u(x) − u0

x − x0

∣∣∣∣q

w
(|x|)dx

)1/q

� K3
(|u − u0|1,q,Ω R (x0);w + ‖u − u0‖q,Ω R (x0);|∇w|

)
. (3)

If Ω is locally Lipschitzian, denoting by s(q) the same value as in Theorem 1, there exists K4 = K4(q) > 0 such that:

‖u − u0‖s(q),Ω;w � K4
(|u|1,q,Ω;w + ‖u − u0‖q,Ω;|∇w|

)
. (4)

Theorem 3 (On the approximation by smooth functions, 1 � q < 3). Let Ω ⊂ R
3 be a locally Lipschitzian exterior domain, u ∈

D1,q
w (Ω), 1 � q < 3, where the weight w = wκ satisfies the conditions (Aα

1 )1<q<3 and (Aα
2 )1<q<3 . Let u0 be the constant vector given

by Lemma 1.
Then u can be approximated in the semi-norm | · |1,q,Ω;w by functions from C∞

0 (Ω)3 if and only if u has zero trace on the boundary
∂Ω and u0 = 0.

Corollary 1 (The unweighted case, 1 � q < 3). Let Ω ⊂ R
3 be a locally Lipschitzian exterior domain. The unconditional version of

Lemma 1 where w ≡ 1 and α = 3−q
q−1 gives the constant vector u0 .

Then functions u ∈ D1,q(Ω), 1 � q < 3, can be approximated in the semi-norm | · |1,q,Ω;1 by functions from C∞
0 (Ω)3 if and only if

u has zero trace on the boundary ∂Ω and u0 = 0.

Remark 1. The corollary just shown improves the corresponding theorem in [3, Theorem II.7.1], indeed that properties
u|∂Ω = 0 and u0 = 0 are not only sufficient but also necessary for approximating functions from D1,q(Ω) by smooth
functions with compact support. As it is explained in [3], one can also replace the zero trace u|∂Ω = 0 by the condition
ψu ∈ W1,q

0 (Ω) for all ψ ∈ C∞
0 (R3) without assuming any regularity on ∂Ωc .

Theorem 4 (On the approximation by smooth functions, q � 3). Let Ω ⊂ R
3 be a locally Lipschitzian exterior domain, u ∈ D1,q

w (Ω),
q � 3 where the weight w = wκ satisfies the conditions (Aα

1 )q�3 and (Aα
2 )q�3 .

Then u can be approximated in the semi-norm ‖ · ‖1,q,Ω;w by functions from C∞
0 (Ω)3 if and only if u|∂Ω = 0.
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2. Relevant preliminaries

We assume w a radial weight function in the q-class of Muckenhoupt weights, and u ∈ D1,q
w (Ω), 1 � q < 3, a given vector

field. S2 is the unit sphere of R3. Let us begin with the following lemma, which is crucial to estimate all surface integrals,
and which gives explicitly this constant vector of R3 we denote by u0. This lemma can be considered as a generalization of
Lemma II.5.2 [3] for radial weights.

Lemma 1 (1 < q < 3). Under the condition (Aα
1 )1<q<3 , there exists a unique u0 ∈ R

3 such that:∫
S2

∣∣u(R,ϕ) − u0
∣∣q

dϕ � Cq R−α‖∇u‖q
q,Ω R ;w

. (5)

Proof. We consider the given function u smooth enough. For r > R > δ(Ωc), using the Hölder inequality, we have:

∣∣u(r, .) − u(R, .)
∣∣q =

∣∣∣∣∣
r∫

R

∂ρu(ρ, .)dρ

∣∣∣∣∣
q

�
( r∫

R

∣∣∂ρu(ρ, .)
∣∣q

ρ2 w(ρ)dρ

)
·
( r∫

R

dρ

ρ
2

q−1 w(ρ)
1

q−1

)q−1

. (6)

Therefore, under the condition (Aα
1 )1<q<3 and from the annexe (formula (17)), we obtain:∫

S2

∣∣u(r,ϕ) − u(R,ϕ)
∣∣q

dϕ � cR−α‖∇u‖q
q,Ω R ;w

.

Now, as R → ∞, u(R, .) strongly converges in Lq(S2) to u∗(.). Put u0 := u∗ = 1
|S2|

∫
S2 u∗(ϕ)dϕ , then from the annexe

(formula (18)), we get ‖u(r) − u0‖q,S2 → 0 as r → ∞ at least for a sequence of radial values {rm}m that tends to ∞. �
Remark 2. When q = 1, the same result holds: indeed, from formula (6), we directly get

∫
S2 |u(r,ϕ) − u(R,ϕ)| dϕ �

C R‖∇u‖1,Ω R ;w , where 1
ρ2 wκ (ρ)

< C R also tending to zero as R → ∞.

Remark 3. For any x0 ∈ R
3, taking R > 0 large enough, we can prove that u(·)−u0|·−x0| ∈ Lq

w(Ω R(x0)). This result with the
associated Sobolev-type inequalities is treated in Section 3.

3. Proofs of Theorems 1 and 2

Technically we follow the proof given in [3] when w ≡ 1. So, let us consider gq(x) := (x−x0)|x−x0|−q and U := u−u0, u
being a smooth function. By means of easy differential calculations and using a transparent notation for the integral Igq ·∇|U|q w ,
we obtain both formulas:∫

ΩR,r(x0)

div
(
gq(x)

∣∣U(x)
∣∣q)

w
(|x|)dx = (3 − q)

∫
ΩR,r(x0)

∣∣∣∣ U(x)

x − x0

∣∣∣∣q

w
(|x|)dx + Igq ·∇|U|q w (7)

=
( ∫

∂ B R (x0)

+
∫

∂ Br(x0)

)(
gq · n|U|q w

)
dS + I∇w (8)

where I∇w := − ∫
ΩR,r(x0)

gq(x)|U(x)|q∇w(|x|)dx.

The first integral
∫
∂ B R (x0)

· · · is non-positive; let us denote the second integral
∫
∂ Br (x0)

· · · by I∂ Br : We apply Lemma 1 to
see how its contribution tends to zero, as r → ∞, even if q = 1,

|I∂ Br | � r1−q w(r)cqr−α‖∇u‖q
q,Ωr(x0);w . (9)

We now estimate Igq ·∇|U|q w using the Young inequality in the form q a.b � γqaq + (q − 1)γ
−1/(q−1)

q bq/(q−1) with γq :=
[ q

3−q ]q−1, 1 < q < 3, so (q − 1)γ
−1/(q−1)

q = (q − 1)
3−q

q , we have:

|Ig·∇|U|q w |�
∫

ΩR,r(x0)

q|gq||U|q−1|∇u|w dx (10)

� γq‖∇u‖q
q,ΩR,r (x0);w + (3 − q)

q − 1

q

∫
Ω (x )

|U(x)|q
|x − x0|q w

(|x|)dx. (11)
R,r 0
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Note that the obtained inequality holds when q = 1.
Then from (7)–(8) and the previous inequality, we obtain:

3 − q

q

∫
ΩR,r(x0)

∣∣∣∣ U(x)

x − x0

∣∣∣∣q

w
(|x|)dx � |I∂ Br | + γq‖∇U‖q

q,ΩR,r(x0);w + |I∇w |. (12)

We estimate I∇w as follows:∣∣∣∣ ∫
ΩR,r(x0)

gq|U|q∇w
(|x|)dx

∣∣∣∣ � 2κ
(
1 + |x0|

) ∫
ΩR,r(x0)

∣∣∣∣ U(x)

x − x0

∣∣∣∣q

w
(|x|)dx,

where we use the fact that the power-type weight is such that |∇w|
|w| |x − x0| � κ(1 + |x0|). Then, from (12), as r → ∞, we

obtain: ∫
Ω R (x0)

∣∣∣∣ U(x)

x − x0

∣∣∣∣q

w
(|x|)dx � γq

κq
‖∇U‖q

q,Ω R (x0);w
, (13)

the first part of Theorem 1 is established. The constant γq
κq

we obtain is precisely (
q

3−q )q( 1
1− 2κq

3−q

)(1 + |x0|).

The proof of the second inequality in Theorem 1 also is largely based on [3]. For r > 2R > δ(Ωc), we will split the proof
into two steps, considering ‖U‖s(q),ΩR∪ΩR,2r ;w � ‖(1−ϕR/2)U‖s(q);w +‖ϕR(1−ϕr)U‖s(q);w , always for U = u−u0, and asking
for the limit when r → ∞. We have denoted ϕR(x) = ϕ(|x|/R), where ϕ ∈ C1(R) is a convenient non-decreasing function
such that ϕ(ξ) = 0 if |ξ | � 1 and ϕ(ξ) = 1 if |ξ |� 2.

For simplicity, we set U#(x) := ϕR(x)(1 − ϕr(x))U(x) and Ub(x) := (1 − ϕR/2(x))U(x), so U# ∈ W1,q
0,w(ΩR,2r) and Ub ∈

W1,q
w (ΩR). Applying the usual Sobolev inequality, we have:∥∥U#

∥∥
s(q),ΩR,2r ;w � c

∥∥∇U#
∥∥

q,ΩR,2r ;w

� c
(‖U‖q,ΩR,2R ;w + ∥∥U| · |−1

∥∥
q,Ωr,2r ;w + ‖∇U‖q,ΩR,2r ;w

)
(14)∥∥Ub

∥∥
s(q),ΩR ;w � c

∥∥∇Ub
∥∥

q,ΩR ;w

� c
(‖U‖q,ΩR/2,R ;w + ‖∇U‖q,ΩR ;w

)
. (15)

Over the two bounded spherical shells ΩαR,2αR , with α = 1
2 or 1, the weighted or unweighted inequalities are the same,

then we can use the classical inequality in the form given by [3], (4.14) to bound the norm ‖ · ‖q,ΩαR,2αR ;w by | · |1,q,Ω R ;w +
(
∫
∂ΩαR,2αR

| · |q dS)1/q , then we apply Lemma 1 for all surface integrals.

The second term in (14) tends to zero as r → ∞; to this end, we first apply the inequality (13) with Ωr . In the first term,
it remains only |U|1,q,Ω R ;w . Then from (14), we get ‖U#‖s(q),Ω R ;w � c‖∇U‖q,Ω R ;w . From (15) we also obtain ‖Ub‖s(q),ΩR ;w �
c‖∇U‖q,ΩR ;w . This completes the proof of (2).

The proof of Theorem 2 follows the same line as in the proof of Theorem 1 except the term I∇w ,

|I∇w | � κ

∫
ΩR,r(x0)

∣∣∣∣ U(x)

x − x0

∣∣∣∣q

w
(|x|)dx +

∫
ΩR,r(x0)

∣∣U(x)
∣∣q∣∣∇w

(|x|)∣∣dx.

Then (
3 − q

q
− κ

)( ∫
Ω R (x0)

∣∣∣∣ U(x)

x − x0

∣∣∣∣q

w
(|x|) dx

)
� γq‖∇U‖q

q,Ω R (x0);w
+

∫
Ω R (x0)

∣∣U(x)
∣∣q∣∣∇w

(|x|)∣∣dx.

4. Proofs of Theorems 3 and 4

To justify the sufficiency, we follow Sobolev’s ideas [9] for approximating functions u from D1,q
w (Ω) by compactly sup-

ported smooth functions. In order to create, for R large enough, a truncated function ψR u having a bounded support in Ω ,
we consider Ω̃R = {x ∈ Ω: exp(

√
lnR) < |x| < R} and:

ψR(x) := ψ

(
ln ln |x|
ln ln R

)
for x ∈ Ω̃R , clearly chosen with

1

2
<

ln ln |x|
ln ln R

< 1,

where ψ ∈ C1(R) is a convenient non-increasing function with ψ(ξ) = 1 if |ξ | � 1 and ψ(ξ) = 0 if |ξ | � 1.
2
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Note that, when u|∂Ω = 0, ψR u ∈ W1,q
0 (Ω) with the property 0 < |∇ψR(x)| � c

ln ln R
1

|x| ln |x| for x ∈ Ω̃R .
As a consequence:

‖∇ψR u‖q
q,Ω̃R ;w

� cq

(ln ln R)q

R∫
exp(

√
ln R)

w(ρ)

∫
S2

1

(ρ lnρ)q

∣∣u(ρ, .)
∣∣q

ρ2 dS dρ.

Then, if 1 < q < 3, from Lemma 1 with u0 = 0, it follows that:

‖∇ψR u‖q
q,Ω̃R ;w

� C

(ln ln R)q

R∫
exp(

√
ln R)

ρ−αρ2−q

(lnρ)q
w(ρ)dρ.

Under the condition (Aα
2 )1<q<3 (| · |2−q−α)(ln | · |)−q ∈ L1

w(Ω), we get ‖∇ψR u‖q,w → 0 as R → ∞ since C
(ln ln R)q → 0.

If q = 1, applying Remark 4 with constant C R replaced by Cexp(
√

ln R)
, we have the same result.

If q > 3, from [3], Exercise 5.2, we get:

‖∇ψR u‖q
q,Ω̃R ;w

� C

(ln ln R)q

R∫
exp(

√
ln R)

ραρ2−q

(lnρ)q
w(ρ)dρ.

Under our assumption (Aα
2 )q>3, we again obtain ‖∇ψR u‖q,w → 0 as R → ∞.

Then, given ε > 0, we can find R large enough and uR,ε ∈ C∞
0 (Ω) such that ‖uR,ε − ψR u‖1,q,Ω;w < ε . So, taking into

account also integrability of ∇u in Lq
w(Ω):

|u − uR,ε |1,q,Ω;w �
∥∥(1 − ψR)∇u

∥∥
q,Ω;w + ‖∇ψR u‖q,Ω̃R ;w + ‖uR,ε − ψR u‖1,q,Ω;w

� 2ε + ‖∇ψR u‖q,Ω̃R ;w � 3ε. (16)

Remark 4. We need conditions (Aα
2 ) because we must control the estimate of ‖∇ψR u‖q,w as R → ∞: Knowing that the

condition (Aα
1 )1<q<3 holds for w = wκ with α � 3−q+κ

q−1 and looking for (Aα
2 ), in the simplest case we have α+q−2−κ � 1

and then we are in the same situation as in [3]:

‖∇ψR u‖q
q,Ω̃R ;w

� C

(ln ln R)q

R∫
exp

√
ln R

1

ln(ρ)qρ
dρ � C

(q − 1)(ln ln R)q

1

(ln R)
q−1

2

.

It remains to prove the necessity, firstly to show the zero trace on ∂Ω of u ∈ D1,q
w (Ω) when approximated in the norm

‖∇ · ‖q,Ω;w by a sequence {un}n>0 with un ∈ C∞
0 (Ω), secondly to verify the relation u0 = 0.

The first point is obvious because the (q, ∂Ω; w)-norms of the traces of u and un are the same. To justify the sec-
ond point, we note that {un}n>0 is a Cauchy sequence in D1,q

0,w(Ω) which converges in Ls(q)
w (Ω) by means of the Sobolev

embedding, and as the main technical ingredient we use the following convergence:

lim
δ→0

1

2δR2

R+δ∫
R−δ

∫
S2

u(r,ϕ)r2 dϕ dr =
∫
S2

u(R,ϕ)dϕ; for a detailed proof see [5,6].

Remark 5. As in [3] when w ≡ 1, the requirement that the constant vector u0 from Lemma 1 is 0 is not necessary if q � 3.
On the other hand, we can improve the results of Theorems 3 and 4 even if the trace of u does not vanish, replacing C∞

0 (Ω)

by C∞
0 (Ω).

5. Annexe (classical properties)

We denote by D1,q
w (Ω) the following set of functions:

D1,q
w (Ω) := {

u
∣∣ u ∈ L1

loc,w(Ω),∇ui ∈ Lq
w(Ω), 1 � i � 3

}
,

where w is in the q-class of Muckenhoupt weights. As usually, by factorization with respect to constants we get the Banach
spaces equipped with the topology | · |1,q,Ω;w := ‖∇ · ‖q,Ω;w . These Banach spaces of classes of functions are sometimes

denoted by the same notation. As it is clear from the context, in the previous sections we used the symbol D1,q
w (Ω) for the
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set of functions. We recall that Ω is unbounded in all directions, the global summability of u is lost and the behavior of u
at large distances. For each q, D1,q

0,w(Ω) denotes the completion of the space C∞
0 (Ω)3 under the norm ‖∇ · ‖q,Ω;w .

By W1,q
w (ΩR), W1,q

0,w(ΩR), we mean full Sobolev spaces with their usual norms, see [10].

Let ∇∗ be the gradient operator on S2, the unit sphere in R
3: The following identity holds |∇∗u|2 = r2[|∇u|2 − |∂ru|2].

It means that either |∇u|q � |∂ru|q or |∇u|q � r−q|∇∗u|q (1 � q < ∞).
From the first inequality, we get:

‖∇u‖q
q,Ω R ;w

� ‖∂ru‖q
q,ΩR,r ;w � c

r∫
R

∫
S2

|∂ρu|q w(ρ)ρ2 dS dρ, (17)

then the last integral is bounded when u ∈ D1,q
w (Ω). Now, from the second inequality, we get:

‖∇u‖q
q,Ω R ;w

� ‖∇u‖q
q,ΩR,r ;w � c

r∫
R

∫
S2

ρ−q
∣∣∇∗u

∣∣q
w(ρ)ρ2 dS dρ

� c

r∫
R

∥∥∇∗u
∥∥q

q,S2ρ
2−q w(ρ)dρ

� ccw

r∫
R

‖u − u‖q
q,S2ρ

2−q w(ρ)dρ. (18)

Here, for Ω regular enough, we have used a Friedrichs–Poincaré-type inequality (so-called Wirtinger inequality) which holds
in the absence of a zero value at the boundary if we subtract from u its mean value. Then:

‖u − u‖q,ΩR,r ;w � C‖∇u‖q,Ω;w .

The property does make sense with ∇u ∈ Lq
loc,w(Ω) only and for 1 � q < ∞.

If Ω is locally Lipschitzian and ∇u ∈ Lq
loc,w(Ω), then u ∈ Lq

loc(Ω) also near the boundary ∂Ω = ∂Ωc , see [8].

Concluding Remark 1. Our purpose in [5] and [6] is to prove the existence of very weak solutions in weighted Lq-spaces to
the Stokes and Navier–Stokes equations formulated to describe the motion of a flow around a rotating rigid body. To deal
with these problems, the weight functions taken from the Muckenhoupt q-class (usually denoted by Aq) of the form wκ

are convenient. Then we have had to define appropriate spaces and needed corresponding embedding theorems; this is the
reason why we have studied the present embeddings. We consider these inequalities interesting by themselves.
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